×

On the initial boundary value problem for the propagating chemical reaction front in an elastic solid. (English) Zbl 07884709

Summary: The paper is concerned with the study of a chemical reaction between diffusing and solid constituents. The reaction is localized at a propagating reaction front and is accompanied by a transformation strain, which generates stresses affecting the reaction rate. The effect of mechanical stresses on the velocity of the reaction front is taken into account basing on the concept of a chemical affinity tensor. The initial boundary value problem of the propagation of the chemical reaction front is discussed by the example of an axisymmetric problem for a reaction in a cylinder in the case of linear elastic solid constituents. The stage of initial accumulation of the diffusing constituent and the stage of the propagation of the reaction front after its separation from the outer boundary of a body are distinguished. The time preceding the start of the reaction is determined. Conditions at the propagating chemical reaction front for the diffusion problem are discussed. A comparative analysis of the solutions obtained in the quasi-stationary and nonstationary formulations of the diffusion problem is carried out, taking into account and without taking into account the influence of the initially accumulated diffusing constituent on the reaction front velocity, as well as for the case of the absence of diffusion in the untransformed material.

MSC:

74E40 Chemical structure in solid mechanics
74B05 Classical linear elasticity
74H10 Analytic approximation of solutions (perturbation methods, asymptotic methods, series, etc.) of dynamical problems in solid mechanics
92E20 Classical flows, reactions, etc. in chemistry
Full Text: DOI

References:

[1] Arafat, Y.; Yang, H.; Dutta, I.; Kumar, PA; Datta, B., A model for intermetallic growth in thin Sn joints between Cu substrates: application to solder microjoints, J. Electron. Mater., 49, 3367-3382, 2020 · doi:10.1007/s11664-020-08019-8
[2] Buttner, CC; Zacharias, M., Retarded oxidation of si nanowires, Appl. Phys. Lett., 89, 2006 · doi:10.1063/1.2424297
[3] Carr, EJ; March, NG, Semi-analytical solution of multilayer diffusion problems with time-varying boundary conditions and general interface conditions, Appl. Math. Comput., 333, 2018, 286-303, 2018 · Zbl 1427.35106
[4] Carslaw, H., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press (1959) · Zbl 0029.37801
[5] Chan, Y., So, A.C., Lai, J.: Growth kinetic studies of cu-sn intermetallic compound and its effect on shear strength of lccc smt solder joints. Mater. Sci. Eng., B 55(1), 5-13 (1998)
[6] Chen, X.; Feng Deng, F.; Shengping Shen, S., Chemomechanical finite element analysis for surface oxidation of Aluminum alloy, Acta Mech., 234, 1713-1732, 2023 · Zbl 1511.74011 · doi:10.1007/s00707-022-03463-5
[7] Chan, Y.; So, AC; Lai, J., Studies of the mechanical and electrical properties of lead-free solder joints, J. Electron. Mater., 31, 11, 1292-1303, 2002 · doi:10.1007/s11664-002-0023-9
[8] Chen, X.; Thornton, SF; Pao, W., Mathematical model of coupled dual chemical osmosis based on mixture-coupling theory, Int. J. Eng. Sci., 129, 145-155, 2018 · Zbl 1423.74600 · doi:10.1016/j.ijengsci.2018.04.010
[9] Cui, Z.; Gao, F.; Qu, J., Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries, J. Mech. Phys. Solids, 61, 293-310, 2013 · doi:10.1016/j.jmps.2012.11.001
[10] Freidin, A.B.: Chemical affinity tensor and stress-assist chemical reactions front propagation in solids. In: ASME International Mechanical Engineering Congress and Exposition, Volume 9: Mechanics of Solids, Structures and Fluids, p. V009T10A102 (2013)
[11] Freidin, AB; Vilchevskaya, EN; Korolev, IK, Stress-assist chemical reactions front propagation in deformable solids, Int. J. Eng. Sci., 83, 57-75, 2014 · Zbl 1423.74328 · doi:10.1016/j.ijengsci.2014.03.008
[12] Freidin, AB; Korolev, IK; Aleshchenko, SP; Vilchevskaya, EN, Chemical affinity tensor and chemical reaction front propagation: theory and FE-simulations, Int. J. Fract., 202, 2, 245-259, 2016 · doi:10.1007/s10704-016-0155-1
[13] Freidin, A.; Morozov, N.; Petrenko, S.; Vilchevskaya, E., Chemical reactions in spherically symmetric problems of mechanochemistry, Acta Mech., 227, 43-56, 2016 · Zbl 1332.74019 · doi:10.1007/s00707-015-1423-2
[14] Freidin, A., Vilchevskaya, E.: Chemical affinity tensor in coupled problems of mechanochemistry. In: Altenbach, H., Öchsner, A. (eds.) Encyclopedia of Continuum Mechanics. Springer, Berlin, Heidelberg (2020)
[15] Geng, S., Zhang, K., Zheng, B., Zhang, Y.: Effects of concentration-dependent modulus and external loads on Li-ion diffusion and stress distribution in a bilayer electrode. Acta Mechanica (2023) · Zbl 1532.74026
[16] Glansdorff, P.; Prigogine, I., Thermodynamic Theory of Stability and Fluctuation, 1971, New-York: Wiley, New-York · Zbl 0246.73005
[17] Grinfeld, M., Thermodynamic Methods in the Theory of Heterogeneous Systems, 1991, New York: Longman, New York · Zbl 0752.73001
[18] Gurtin, ME, Configurational Forces as Basic Concepts of Continuum Physics, 2000, New York: Springer, New York · Zbl 0951.74003
[19] Heidemeyer, H.; Single, C.; Zhou, F.; Prins, FE; Kern, D.; Plies, E., Self-limiting and pattern dependent oxidation of silicon dots fabricated on silicon-on-insulator material, J. Appl. Phys., 87, 4580-4585, 2000 · doi:10.1063/1.373105
[20] Jia, Z.; Li, T., Stress-modulated driving force for lithiation reaction in hollow nano-anodes, J. Power Sources, 275, 866-876, 2015 · doi:10.1016/j.jpowsour.2014.11.081
[21] Kao, D., McVitie, J., Nix, W., Saraswat, K.: Two dimensional thermal oxidation of silicon-ii. Modeling stress effect in wet oxides. IEEE Trans. Electron Devices ED-35, 25-37 (1988)
[22] Kay, T.; Luca Giuggioli, L., Diffusion through permeable interfaces: fundamental equations and their application to first-passage and local time statistics, Phys. Rev. Res., 4, L032039, 2022 · doi:10.1103/PhysRevResearch.4.L032039
[23] Kienzler, R.; Herrmann, G., Mechanics in Material Space with Application to Defect and Fracture Mechanics, 2000, Berlin: Springer, Berlin · Zbl 0954.74001
[24] Knyazeva, A., Cross effects in solid media with diffusion, J. Appl. Mech. Tech. Phys., 44, 373-384, 2003 · Zbl 1101.74312 · doi:10.1023/A:1023485224031
[25] Knyazeva, A., Application of irreversible thermodynamics to diffusion in solids with internal surfaces, J. Non-Equilib. Thermodyn., 45, 4, 401-418, 2020 · doi:10.1515/jnet-2020-0021
[26] Kosztołowicz, T.; Mrowczynski, SS, Membrane boundary condition, Acta Physica Polonica B, 32, 217, 2001
[27] Kosztołowicz, T.; Dutkiewicz, A., Boundary conditions at a thin membrane for normal diffusion, classical subdiffusion, and slow subdiffusion processes, Math. Methods Appl. Sci., 43, 18, 10500-10510, 2020 · Zbl 1470.60285 · doi:10.1002/mma.6539
[28] Liu, XH; Wang, JW; Huang, S.; Fan, F.; Huang, X.; Liu, Y.; Krylyuk, S.; Yoo, J.; Dayeh, SA; Davydov, AV; Mao, SX; Picraux, ST; Zhang, S.; Li, J.; Zhu, T.; Huang, JY, In situ atomic-scale imaging of electrochemical lithiation in silicon, Nat. Nanotechnol., 7, 749-756, 2012 · doi:10.1038/nnano.2012.170
[29] Maugin, G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. Chapman and Hall/CRC (2010) · Zbl 1234.74002
[30] McDowell, MT; Lee, SW; Harris, JT; Korgel, BA; Wang, CM; Nix, WD; Cui, Y., In situ TEM of two-phase lithiation of amorphous silicon nanospheres, Nano Lett., 13, 758-764, 2013 · doi:10.1021/nl3044508
[31] McDowell, MT; Lee, SW; Nix, WD; Cui, Y., 25th anniversary article: understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries, Adv. Mater., 25, 36, 4966-4984, 2013 · doi:10.1002/adma.201301795
[32] Morozov, A.; Freidin, A.; Müller, W., On stress-affected propagation and stability of chemical reaction fronts in solids, Int. J. Eng. Sci., 189, 2023 · Zbl 1532.74034 · doi:10.1016/j.ijengsci.2023.103876
[33] Muhlstein, CL; Ritchie, RO, High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface, Int. J. Fract., 119, 4-2, 449-474, 2003 · doi:10.1023/A:1024988031390
[34] Muhlstein, CL; Stach, EA; Ritchie, RO, A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading, Acta Mater., 50, 14, 3579-3595, 2002 · doi:10.1016/S1359-6454(02)00158-1
[35] Petrenko, S.; Freidin, AB; Charkaluk, E., On chemical reaction planar fronts in an elastic-viscoelastic mechanical framework, Continuum Mech. Thermodyn., 34, 137-163, 2021 · doi:10.1007/s00161-021-01051-x
[36] Poluektov, M.; Freidin, AB; Figiel, Ł., Modelling stress-affected chemical reactions in nonlinear viscoelastic solids with application to lithiation reaction in spherical Si particles, Int. J. Eng. Sci., 128, 44-62, 2018 · Zbl 1423.92260 · doi:10.1016/j.ijengsci.2018.03.007
[37] Poluektov, M.; Figiel, Ł., Numerical method for finite-strain mechanochemistry with localised chemical reactions treated using a Nitsche approach, Comput. Mech., 63, 885-911, 2018 · Zbl 1468.74070 · doi:10.1007/s00466-018-1628-z
[38] Polyanin, A.: Handbook of Linear PDEs for Engineers and Scientists. Chapman and Hall/CRC (2001)
[39] Prigogine, I.; Defay, R., Chemical Thermodynamics, 1954, Green: Longmans, Green
[40] Rusanov, AI, Surface thermodynamics revisited, Surf. Sci. Rep., 58, 5-8, 111-239, 2005 · doi:10.1016/j.surfrep.2005.08.002
[41] Schaefer, M.; Fournelle, RA; Liang, J., Theory for intermetallic phase growth between Cu and liquid Sn-Pb solder based on grain boundary diffusion control, J. Electron. Mater., 27, 11, 1167-1176, 1998 · doi:10.1007/s11664-998-0066-7
[42] Shir, D.; Liu, BZ; Mohammad, AM; Lew, KK; Mohney, SE, Oxidation of silicon nanowires, J. Vacuum Sci. Technol. B, 24, 3, 1333-1336, 2006 · doi:10.1116/1.2198847
[43] Vilchevskaya, E., Modeling stress-affected chemical reactions in composite materials, Z. Angew. Math. Mech. (ZAMM), 101, 4, 2021 · Zbl 07809807 · doi:10.1002/zamm.202000281
[44] Wang, JW; He, Y.; Fan, F.; Liu, XH; Xia, S.; Liu, Y.; Harris, C.; Li, H.; Huang, JY; Mao, SX; Ting, Z., Two-phase electrochemical lithiation in amorphous silicon, Nano Lett., 13, 709-715, 2013 · doi:10.1021/nl304379k
[45] Yang, F.; Li, Y.; Zhang, K., A multiplicative finite strain deformation for diffusion-induced stress: an incremental approach, Int. J. Eng. Sci., 187, 2023 · Zbl 07700677 · doi:10.1016/j.ijengsci.2023.103841
[46] Zhao, K.; Pharr, M.; Hartle, L.; Vlassak, JJ; Suo, Z., Fracture and debonding in lithium-ion batteries with electrodes of hollow core shell nanostructures, J. Power Sources, 218, 6-14, 2012 · doi:10.1016/j.jpowsour.2012.06.074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.