×

Hybridized weak Galerkin finite element methods for Brinkman equations. (English) Zbl 1476.65304

Summary: This paper presents a hybridized weak Galerkin (HWG) finite element method for solving the Brinkman equations. Mathematically, Brinkman equations can model the Stokes and Darcy flows in a unified framework so as to describe the fluid motion in porous media with fractures. Numerical schemes for Brinkman equations, therefore, must be designed to tackle Stokes and Darcy flows at the same time. We demonstrate that HWG is capable of providing very accurate and stable numerical approximations for both Darcy and Stokes. The main features of HWG is that it approximates the differential operators by their weak forms as distributions and it introduces the Lagrange multipliers to relax certain constraints. We establish the optimal order error estimates for HWG solutions of Brinkman equations. We also present a Schur complement formulation of HWG, which reduces the systems’ computational complexity significantly. A number of numerical experiments are provided to confirm the theoretical developments.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J50 Variational methods for elliptic systems
76D07 Stokes and related (Oseen, etc.) flows
76S05 Flows in porous media; filtration; seepage
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer, New York, 2008. · Zbl 1135.65042
[2] Z. Chen, Finite Element Methods and Their Applications, Springer-Verlag Berlin, 2005. · Zbl 1082.65118
[3] L. Chen; J. Wang; X. Ye, A posteriori error estimates for weak Galerkin finite element methods for second order elliptic problems, J. Sci. Comput., 59, 496-511 (2014) · Zbl 1307.65153 · doi:10.1007/s10915-013-9771-3
[4] B. Cockburn; J. Gopalakrishnan; R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365 (2009) · Zbl 1205.65312 · doi:10.1137/070706616
[5] A. Hannukainen; M. Juntunen; R. Stenberg, Computations with finite element methods for the Brinkman problem, Comput. Geosci., 15, 155-166 (2011) · Zbl 1333.76051
[6] M. Juntunen; R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo, 47, 129-147 (2010) · Zbl 1410.76179 · doi:10.1007/s10092-009-0017-6
[7] J. Könnö; R. Stenberg, Numerical computations with \(H\)(div)-finite elements for the Brinkman problem, Comput. Geosci., 16, 139-158 (2012) · Zbl 1348.76100 · doi:10.1007/s10596-011-9259-x
[8] K. A. Mardal; X.-C. Tai; R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40, 1605-1631 (2002) · Zbl 1037.65120 · doi:10.1137/S0036142901383910
[9] L. Mu; J. Wang; Y. Wang; X. Ye, A computational study of the weak Galerkin method for second-order elliptic equations, Numer. Algorithms, 63, 753-777 (2013) · Zbl 1271.65140 · doi:10.1007/s11075-012-9651-1
[10] L. Mu; J. Wang; X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods PDE, 30, 1003-1029 (2014) · Zbl 1314.65151 · doi:10.1002/num.21855
[11] L. Mu; J. Wang; X. Ye, A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods, J. Comput. Phys., 273, 327-342 (2014) · Zbl 1351.76072 · doi:10.1016/j.jcp.2014.04.017
[12] L. Mu; J. Wang; X. Ye, A hybridized formulation for the weak Galerkin mixed finite element method, J. Comput. Appl. Math., 307, 335-345 (2016) · Zbl 1338.76063 · doi:10.1016/j.cam.2016.01.004
[13] L. Mu; J. Wang; X. Ye; S. Zhang, A \(C^0\)-weak Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 59, 473-495 (2014) · Zbl 1305.65233 · doi:10.1007/s10915-013-9770-4
[14] L. Mu, J. Wang, X. Ye et al, A weak Galerkin finite element method for the Maxwell equations, J. Sci. Comput., 65 (2015), 363-386. · Zbl 1327.65220
[15] N. C. Nguyen; J. Peraire; B. Cockburn, A hybridizable discontinuous Galerkin method for Stokes flow, Comput. Methods Appl. Mech. Engrg., 199, 582-597 (2010) · Zbl 1227.76036 · doi:10.1016/j.cma.2009.10.007
[16] P.-A. Raviart and J. M. Thomas, A mixed finite element method for second order elliptic problems, in: I. Galligani, E. Magenes (Eds.), Mathematical Aspects of the Finite Element Method, in: Lecture Notes in Math., Springer, Berlin, 606 (1977), 292-315. Technical Report LA-UR-73-0479, Los Alamos Scientific Laboratory, Los Alamos, NM, 1973. · Zbl 0362.65089
[17] J. Wang and X. Wang, Weak Galerkin finite element methods for elliptic PDEs(in Chinese), Sci. Sin. Math., 45 (2015), 1061-1092. · Zbl 1488.65655
[18] C. Wang; J. Wang; R. Wang; R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307, 346-366 (2016) · Zbl 1338.74104 · doi:10.1016/j.cam.2015.12.015
[19] J. Wang; Y. Wang; X. Ye, Unified a posteriori error estimator for finite element methods for the Stokes equations, Int. J. Numer. Anal. Model., 10, 551-570 (2013) · Zbl 1452.76059
[20] R. Wang; X. Wang; Q. Zhai; R. Zhang, A weak Galerkin finite element scheme for solving the stationary Stokes equations, J. Comput. Appl. Math., 302, 171-185 (2016) · Zbl 1337.65162 · doi:10.1016/j.cam.2016.01.025
[21] J. Wang; X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241, 103-115 (2013) · Zbl 1261.65121 · doi:10.1016/j.cam.2012.10.003
[22] J. Wang; X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comp., 83, 2101-2126 (2014) · Zbl 1308.65202 · doi:10.1090/S0025-5718-2014-02852-4
[23] J. Wang; X. Ye, A weak Galerkin finite element method for the stokes equations, Adv. Comput. Math., 42, 155-174 (2016) · Zbl 1382.76178 · doi:10.1007/s10444-015-9415-2
[24] J. Wang, X. Ye and R. Zhang, Basics of weak Garkin finite element methods(in Chinese), Math. Numer. Sin., 38 (2016), 289-308. · Zbl 1374.65196
[25] X. Wang; Q. Zhai; R. Zhang, The weak Galerkin method for solving the incompressible Brinkman flow, J. Comput. Appl. Math., 307, 13-24 (2016) · Zbl 1338.76069 · doi:10.1016/j.cam.2016.04.031
[26] H. Xie, Q. Zhai and R. Zhang, The weak galerkin method for eigenvalue problems, arXiv: 1508.05304, (2015).
[27] M. Yang; J. Liu; Y. Lin, Pressure recovery for weakly over-penalized discontinuous Galerkin methods for the Stokes problem, J. Sci. Comput., 63, 699-715 (2015) · Zbl 1320.76077 · doi:10.1007/s10915-014-9911-4
[28] Q. Zhai; R. Zhang; L. Mu, A new weak Galerkin finite element scheme for the Brinkman model, Commun. Comput. Phys., 19, 1409-1434 (2016) · Zbl 1373.76108 · doi:10.4208/cicp.scpde14.44s
[29] Q. Zhai; R. Zhang; X. Wang, A hybridized weak Galerkin finite element scheme for the Stokes equations, Sci. China Math., 58, 2455-2472 (2015) · Zbl 1338.76071 · doi:10.1007/s11425-015-5030-4
[30] T. Zhang; L. Tang, A weak finite element method for elliptic problems in one space dimension, Appl. Math. Comput., 280, 1-10 (2016) · Zbl 1410.65462 · doi:10.1016/j.amc.2016.01.018
[31] R. Zhang; Q. Zhai, A weak Galerkin finite element scheme for the biharmonic equations by using polynomials of reduced order, J. Sci. Comput., 64, 559-585 (2015) · Zbl 1331.65163 · doi:10.1007/s10915-014-9945-7
[32] H. Zhang; Y. Zou; Y. Xu; Q. Zhai; H. Yue, Weak Galerkin finite element method for second order parabolic equations, Int. J. Numer. Anal. Model., 13, 525-544 (2016) · Zbl 1362.65110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.