×

Estimates of the rate of convergence in the von Neumann and Birkhoff ergodic theorems. (English. Russian original) Zbl 1370.37014

Trans. Mosc. Math. Soc. 2016, 1-53 (2016); translation from Tr. Mosk. Mat. O.-va 77, No. 1, 1-66 (2016).
This article is a survey of results about the rate of convergence of ergodic averages in the theorems of Birkhoff and von Neumann. The estimates for the rate of convergence are expressed in terms of spectral measures and correlation coefficients. Let \((X,\mathcal B,\mu)\) be a probability space and \(T:X\to X\) be the corresponding dynamical map. Denote by \(S_n(\varphi)(x)\) the Birkhoff ergodic average for a map \(\varphi:X\to\mathbb R\) in \(L^1(X,\mu)\). If \(\varphi^\ast\) is the point-wise limit of \(S_n(\varphi)\) then to study the rate of convergence of the ergodic average one must analyze the decay of the sequence \(P_{n,\varepsilon}=\mu(\sup_{k\geq n}\{| S_n(\varphi)-\varphi^\ast|>\varepsilon\})\) for \(n\to\infty\). This is a problem of large deviations indeed. Rates for continuous-time dynamical systems and for operators are also considered. If \(L^0_2(X)\) is the subspace of \(L_2(X)\) which consists of maps with average zero then to obtain the mentioned rates, the authors analyze firstly the variance \(\| S_n(\varphi-\varphi^\ast)\|^2_2=\| S_n(\varphi)-\varphi^\ast\|\), i.e., the measure of deviation the in \(L_2\)-norm of \(S_n(\varphi)\) from the limit \(\varphi^\ast\). Thus bounds for the variance in terms of the spectral measures \(\sigma_{\varphi-\varphi^\ast}\) are obtained. These estimates are applied to estimate the rates convergence in the Birkhoff and von Neumann theorems.

MSC:

37A30 Ergodic theorems, spectral theory, Markov operators
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
60G10 Stationary stochastic processes
Full Text: DOI

References:

[1] Neum2 J. von Neumann, Physical applications of the ergodic hypothesis, Proc. Nat. Acad. Sci. USA 18 (1932), no. 3, 263-266. · JFM 58.1272.01
[2] Ka A. G. Kachurovskii, Rates of convergence in ergodic theorems, Uspekhi Mat. Nauk 51 (1996), no. 4(310), 73-124; English transl., Russian Math. Surveys 51 (1996), no. 4, 653-703. · Zbl 0880.60024
[3] KSF I. P. Kornfeld, Ya. G. Sinai, and S. V. Fomin, Ergodic theory, Nauka, Moscow, 1980; English transl., Springer, Berlin-Heidelberg-New York, 1982. · Zbl 0508.28008
[4] KR A. G. Kachurovskii and A. V. Reshetenko, On the rate of convergence in von Neumann’s ergodic theorem with continuous time, Mat. Sb. 201 (2010), no. 4, 25-32; English transl., Sb. Math. 201 (2010), no. 3-4, 493-500. · Zbl 1200.28018
[5] Si Ya. G. Sinai, Ergodic theory of smooth dynamical systems, Chap. 6. Stochasticity of smooth dynamical systems. Elements of KAM theory, Current problems in mathematics, Fundamental directions, vol. 2, Dynamical systems-2, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1985, 115-122. (Russian)
[6] Young_3 L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Ann. of Math. (2) 147 (1998), no. 3, 585-650. · Zbl 0945.37009
[7] Young_1 L.-S. Young, Recurrence times and rates of mixing, Israel J. Math. 110 (1999), 153-188. · Zbl 0983.37005
[8] Rey-Young L. Rey-Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynam. Systems 28 (2008), no. 2, 587-612. · Zbl 1154.37331
[9] Melb_Nicol I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems, Trans. Amer. Math. Soc. 360 (2008), no. 12, 6661-6676. · Zbl 1151.37031
[10] Melb I. Melbourne, Large and moderate deviations for slowly mixing dynamical systems, Proc. Amer. Math. Soc. 137 (2009), no. 5, 1735-1741. · Zbl 1167.37020
[11] Leo V. P. Leonov, On the dispersion of time means of a stationary stochastic process, Teor. Veroyatnost. Primenen. 6 (1961), no. 1, 93-101; English transl., Theory Probab. Appl. 6 (1961), no. 1, 87-93. · Zbl 0128.12701
[12] Bel61 Yu. K. Belyaev, An example of a process with mixing, Teor. Veroyatnost. Primenen. 6 (1961), no. 1, 101-102; English transl., Theory Probab. Appl. 6 (1961), no. 1, 93-94. · Zbl 0106.33204
[13] KaSe10 A. G. Kachurovskii and V. V. Sedalishchev, On the constants in the estimates for the rate of convergence in von Neumann’s ergodic theorem, Mat. Zametki 87 (2010), no. 5, 756-763; English transl., Math. Notes 87 (2010), no. 5-6, 720-727. · Zbl 1273.47026
[14] KaSe11 A. G. Kachurovskii and V. V. Sedalishchev, Constants of estimates for the rate of convergence in the von Neumann and Birkhoff ergodic theorems, Mat. Sb. 202 (2011), no. 8, 21-40; English transl., Sb. Math. 202 (2011), no. 7-8, 1105-1125. · Zbl 1241.28010
[15] DZhKa N. A. Dzhulai and A. G. Kachurovskii, Constants in estimates for the rate of convergence in von Neumann’s ergodic theorem with continuous time, Sibirsk. Mat. Zh. 52 (2011), no. 5, 1039-1052; English transl., Sib. Math. J. 52 (2011), no. 5, 824-835. · Zbl 1285.47014
[16] KaSe12 A. G. Kachurovskii and V. V. Sedalishchev, On the constants in the estimates of the rate of convergence in the Birkhoff ergodic theorem, Mat. Zametki 91 (2012), no. 4, 624-628; English transl., Math. Notes 91 (2012), no. 3-4, 582-587. · Zbl 1370.37013
[17] Se12 V. V. Sedalishchev, Constants in estimates for the rate of convergence in Birkhoff’s ergodic theorem with continuous time, Sibirsk. Mat. Zh. 53 (2012), no. 5, 1102-1110; English transl., Sib. Math. J. 53 (2012), no. 5, 882-888. · Zbl 1260.37006
[18] Se14 V. V. Sedalishchev, The relation between rates of convergence in the von Neumann and Birkhoff ergodic theorems in \(L_p\), Sibirsk. Mat. Zh. 55 (2014), no. 2, 412-426; English transl., Sib. Math. J. 55 (2014), no. 2, 336-348. · Zbl 1351.37031
[19] KaPo12 A. G. Kachurovskii and I. V. Podvigin, Large deviations and the rate of convergence in the Birkhoff ergodic theorem, Mat. Zametki 94 (2013), no. 4, 569-577; English transl., Math. Notes 94 (2013), no. 3-4, 524-531. · Zbl 1370.37012
[20] KaPoDAN A. G. Kachurovskii and I. V. Podvigin, Convergence rates in ergodic theorems for some billiards and Anosov diffeomorphisms, Dokl. Akad. Nauk 451 (2013), no. 1, 11-13; English transl., Dokl. Math. 88 (2013), no. 1, 385-387. · Zbl 1328.37005
[21] KaPoDAN2 A. G. Kachurovskii and I. V. Podvigin, Rates of convergence in ergodic theorems for the periodic Lorentz gas on the plane, Dokl. Akad. Nauk 455 (2014), no. 1, 11-14; English transl., Dokl. Math. 89 (2014), no. 2, 139-142. · Zbl 1352.37012
[22] KaPOMI A. G. Kachurovskii, On the convergence of averages in the ergodic theorem for the groups \(\mathbbZ^d\), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 256 (1999), 121-128; English transl., J. Math. Sci. (New York) 107 (2001), no. 5, 4231-4236. · Zbl 0987.28014
[23] KaVe A. M. Vershik and A. G. Kachurovskii, Rates of convergence in ergodic theorems for locally finite groups, and reversed martingales, Differ. Uravn. Protsessy Upr. (1999), no. 1, 19-26. (Russian) · Zbl 1506.60013
[24] Ka99 A. G. Kachurovskii, On uniform convergence in the ergodic theorem, J. Math. Sci. (New York) 95 (1999), no. 5, 2546-2551. · Zbl 0936.28010
[25] Sh A. N. Shiryaev, Probability, Nauka, Moscow, 1989; English transl., Springer, New York, 1995.
[26] CuLi C. Cuny and M. Lin, Pointwise ergodic theorems with rate and application to the CLT for Markov chains, Ann. Inst. Henri Poincar\'e Probab. Stat. 45 (2009), no. 3, 710-733. · Zbl 1186.37013
[27] GHT11 A. Gomilko, M. Haase, and Yu. Tomilov, On rates in mean ergodic theorems, Math. Res. Lett. 18 (2011), no. 2, 201-213. · Zbl 1252.47005
[28] GHT12 A. Gomilko, M. Haase, and Yu. Tomilov, Bernstein functions and rates in mean ergodic theorems for operator semigroups, J. Anal. Math. 118 (2012), no. 2, 545-576. · Zbl 1306.47014
[29] Go M. I. Gordin, The central limit theorem for stationary processes, Dokl. Akad. Nauk SSSR 188 (1969), no. 4, 739-741; English transl., Sov. Math. Dokl. 10 (1969), 1174-1176. · Zbl 0212.50005
[30] St M. Stenlund, A strong pair correlation bound implies the CLT for Sinai billiards, J. Stat. Phys. 140 (2010), no. 1, 154-169. · Zbl 1201.37056
[31] Kr U. Krengel, Ergodic theorems, de Gruyter Stud. in Math., vol. 6, Walter de Gruyter, Berlin, 1985. · Zbl 0575.28009
[32] Ba N. K. Bari, A treatise on trigonometric series, Fizmatgiz, Moscow, 1961; English transl., vol. I, II, Pergamon Press, Oxford-London-New York-Paris-Frankfurt, 1964.
[33] Neum J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Nat. Acad. Sci. USA 18 (1932), no. 1, 70-82. · Zbl 0004.31004
[34] Ibragimov I. A. Ibragimov and Yu. V. Linnik, Independent and stationary sequences of random variables, Nauka, Moscow, 1965; English transl., Wolters-Noordhoff Publishing Company, Groningen, 1971. · Zbl 0219.60027
[35] Ga98 V. F. Gaposhkin, On the rate of decrease of the probabilities of \(\varepsilon \)-deviations for means of stationary processes, Mat. Zametki 64 (1998), no. 3, 366-372; English transl., Math. Notes 64 (1998), no. 3-4, 316-321 (1999). · Zbl 0930.60027
[36] Ga79 V. F. Gaposhkin, Estimates of means for almost all realizations of stationary processes, Sibirsk. Mat. Zh. 20 (1979), no. 5, 978-989; English transl., Sib. Math. J. 20 (1980), no. 5, 691-699. · Zbl 0447.60028
[37] Ga75 V. F. Gaposhkin, Convergence of series connected with stationary sequences, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 6, 1366-1392; English transl., Math. USSR-Izv. 9 (1975), no. 6, 1297-1321. · Zbl 0326.60038
[38] Br F. Browder, On the iterations of transformations in noncompact minimal dynamical systems, Proc. Amer. Math. Soc. 9 (1958), no. 5, 773-780. · Zbl 0092.12602
[39] Zig1 A. Zygmund, Trigonometric series, vol. 1, At the University Press, Cambridge, 1959. · Zbl 0085.05601
[40] AL I. Assani and M. Lin, On the one-sided Hilbert transform, Ergodic Theory and Related Fields, Contemp. Math., vol. 430, Amer. Math. Soc., Providence, RI, 2007, 21-39. · Zbl 1134.47007
[41] Ed R. E. Edwards, Fourier series. A modern introduction, vol. 1, 2, Springer-Verlag, New York-Heidelberg-Berlin, 1979, 1982. · Zbl 0424.42001
[42] Hel A. Ya. Helemskii, Lectures and exercises on functional analysis, MCCME, Moscow, 2004; English transl., Transl. of Math. Monographs, vol. 233, Amer. Math. Soc., Providence, RI, 2006. · Zbl 1123.46001
[43] Ga01 V. F. Gaposhkin, Some examples concerning the problem of \(\varepsilon \)-deviations for stationary sequences, Teor. Veroyatnost. Primenen. 46 (2001), no. 2, 370-375; English transl., Theory Probab. Appl. 46 (2003), no. 2, 341-346. · Zbl 1003.60036
[44] Bo03 V. I. Bogachev, Measure theory, vol. 1, Regul. i Khaotich. Dinamika, Moscow-Izhevsk, 2003; English transl., Springer-Verlag, Berlin-Heidelberg, 2007.
[45] DNF86 B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern geometry. Methods and applications, Nauka, Moscow, 1986; English transl., parts 1-3, Springer-Verlag, New York, 1992, 1985,\linebreak 1990. · Zbl 0565.57001
[46] Bl01 M. L. Blank, Stability and localization in chaotic dynamics, MCCME, Moscow, 2001. (Russian)
[47] LeVo00 E. Lesigne and D. Voln\'y, Large deviations for generic stationary processes, Colloq. Math. 84/85 (2000), part 1, 75-82. · Zbl 0973.28014
[48] Sarig O. Sarig, Decay of correlations, Handbook of Dynamical Systems 1 (2006), part B, 244-263. · Zbl 1042.37005
[49] YoungSRB L.-S. Young, What are SRB measures, and which dynamical systems have them?, J. Stat. Phys. 108 (2002), no. 5-6, 733-754. · Zbl 1124.37307
[50] Liv-Saus-Vai C. Liverani, B. Saussol, and S. Vaienty, A probabilistic approach to intermittency, Ergodic Theory Dynam. Systems 19 (1999), no. 3, 671-685. · Zbl 0988.37035
[51] Hu H. Hu, Decay of correlations for piecewise smooth maps with indifferent fixed points, Ergodic Theory Dynam. Systems 24 (2004), no. 2, 495-524. · Zbl 1071.37026
[52] Poll-Sharp-Yuri M. Pollicott, R. Sharp, and M. Yuri, Large deviations for maps with indifferent fixed points, Nonlinearity 11 (1998), no. 4, 1173-1184. · Zbl 0907.28010
[53] Poll-Sharp M. Pollicott and R. Sharp, Large deviations for intermittent maps, Nonlinearity 22 (2009), no. 9, 2079-2092. · Zbl 1221.37014
[54] S02 O. Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002), no. 3, 629-653. · Zbl 1042.37005
[55] G04 S. Gou\"ezel, Sharp polynomial estimates for the decay of correlations, Israel J. Math. 139 (2004), 29-65. · Zbl 1070.37003
[56] Markar R. Markarian, Billiards with polynomial decay of correlations, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 177-197. · Zbl 1115.37037
[57] Cher-Zh_1 N. Chernov and H.-K. Zhang, Billiards with polynomial mixing rates, Nonlinearity 18 (2005), no. 4, 1527-1553. · Zbl 1143.37314
[58] Cher-Markar_1 N. Chernov and R. Markarian, Dispersing billiards with cusps: slow decay of correlations, Comm. Math. Phys. 270 (2007), no. 3, 727-758. · Zbl 1113.37020
[59] Cher-Zh_2 N. Chernov and H.-K. Zhang, Improved estimates for correlations in billiards, Comm. Math. Phys. 277 (2008), no. 2, 305-321. · Zbl 1143.37024
[60] Cher-Markar_2 N. Chernov and R. Markarian, Chaotic billiards, Math. Surveys and Monographs, vol. 127, Amer. Math. Soc., Providence, RI, 2006. · Zbl 1101.37001
[61] Tr09 S. Troubetzkoy, Approximation and billiards, Dynamical systems and Diophantine approximation, S\'emin. congr., vol. 19, Soc. Math. France, Paris, 2009, 173-185. · Zbl 1226.37020
[62] Ba-Melb P. Balint and I. Melbourne, Decay of correlations and invariance principle for dispersing billiards with cusps, and related planar billiard flows, J. Stat. Phys. 133 (2008), no. 3, 435-447. · Zbl 1161.82016
[63] AnGo V. M. Anikin and A. F. Golubentsev, Analytical models of deterministic chaos, Fizmatlit, Moscow, 2007. (Russian)
[64] AnArRe V. M. Anikin, S. S. Arkadakskii, and A. S. Remizov, An analytical solution to the spectral problem for the Perron-Frobenius operator of piecewise linear chaotic maps, Izv. Vyssh. Uchebn. Zaved. Prikl. Nelinein. Din. 14 (2006), no. 2, 16-34. · Zbl 1119.37307
[65] Parry W. Parry, On the \( \beta \)-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960), no. 3-4, 401-416. · Zbl 0099.28103
[66] MaRo87 D. Mayer and G. Roepstorff, On the relaxation time of Gauss’s continued-fraction map I. The Hilbert space approach (Koopmanism), J. Stat. Phys. 47 (1987), no. 1-2, 149-171. · Zbl 0658.10057
[67] MaRo88 D. Mayer and G. Roepstorff, On the relaxation time of Gauss’s continued-fraction map II. The Banach space approach (Transfer operator method), J. Stat. Phys. 50 (1988), no. 1-2, 331-344. · Zbl 0658.10058
[68] AnSh03 I. Antoniou and S. Shkarin, Analyticity of smooth eigenfunctions and spectral analysis of the Gauss map, J. Stat. Phys. 111 (2003), no. 1-2, 355-369. · Zbl 1013.60047
[69] IoKra02 M. Iosifescu and C. Kraaikamp, Metrical theory and continued fractions, Mathematics and Its Applications, vol. 547, Kluwer Acad. Publ., Dordrecht, 2002. · Zbl 1122.11047
[70] Wad S. Waddington, Large deviation asymptotics for Anosov flows, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire 13 (1996), no. 4, 445-484. · Zbl 0864.58038
[71] BRLi X. Bressaud and C. Liverani, Anosov diffeomorphisms and coupling, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 129-152. · Zbl 1067.37030
[72] Bo79 R. Bowen, Methods of symbolic dynamics, Mathematics, vol. 13, Mir, Moscow, 1979. (Russian)
[73] Or-Pel L. Orey and S. Pelikan, Deviation of trajectory averages and the defect in Pesin’s formula for Anosov diffeomorphisms, Trans. Amer. Math. Soc. 315 (1989), no. 2, 741-753. · Zbl 0691.60022
[74] Kifer Y. Kifer, Large deviations in dynamical systems and stochastic processes, Trans. Amer. Math. Soc. 321 (1990), no. 2, 505-524. · Zbl 0714.60019
[75] PolSh9 M. Pollicott and R. Sharp, Large deviations, fluctuations and shrinking intervals, Comm. Math. Phys. 290 (2009), no. 1, 321-334. · Zbl 1193.37038
[76] Young_2 L.-S. Young, Large deviations in dynamical systems, Trans. Amer. Math. Soc. 318 (1990), no. 2, 525-543. · Zbl 0721.58030
[77] Sm70 S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. · Zbl 0202.55202
[78] KaPo11 A. G. Kachurovskii and I. V. Podvigin, Estimates of the rate of convergence in the Birkhoff and Bowen theorems for Anosov flows, Vestnik Kemerov. Univ. 47 (2011), no. 3/1, 255-258. (Russian)
[79] Ch98 N. I. Chernov, Markov approximations and decay of correlations for Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 269-324. · Zbl 0911.58028
[80] D98Ann D. Dolgopyat, On decay of correlations in Anosov flows, Ann. of Math. (2) 147 (1998), no. 2, 357-390. · Zbl 0911.58029
[81] D98Erg D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory Dynam. Systems 18 (1998), no. 5, 1097-1114. · Zbl 0918.58058
[82] D00 D. Dolgopyat, Prevalence of rapid mixing. II. Topological prevalence, Ergodic Theory Dynam. Systems 20 (2000), no. 4, 1045-1059. · Zbl 0965.37032
[83] Li04 C. Liverani, On contact Anosov flows, Ann. of Math. (2) 159 (2004), no. 3, 1275-1312. · Zbl 1067.37031
[84] Di06 K. D\'az-Ordaz, Decay of correlations for non-H\"older observables for one-dimensional expanding Lorenz-like maps, Discrete Contin. Dyn. Syst. 15 (2006), no. 1, 159-176. · Zbl 1115.37039
[85] Ly06 V. Lynch, Decay of correlations for non-H\"older observables, Discrete Contin. Dyn. Syst. 16 (2006), no. 1, 19-46. · Zbl 1110.37002
[86] Zh10 H.-K. Zhang, Decay of correlations on non-H\"older observables, Int. J. Nonlinear Sci. 10 (2010), no. 3, 359-369. · Zbl 1231.37022
[87] Young92 L.-S. Young, Decay of correlations for certain quadratic maps, Comm. Math. Phys. 146 (1992), no. 1, 123-138. · Zbl 0760.58030
[88] KeNo92 G. Keller and T. Nowicki, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps, Comm. Math. Phys. 149 (1992), no. 1, 31-69. · Zbl 0763.58024
[89] BeYo00 M. Benedicks and L.-S. Young, Markov extensions and decay of correlations for certain H\'enon maps, Ast\'erisque 261 (2000), 13-56. · Zbl 1044.37013
[90] Cher N. Chernov, Decay of correlations and dispersing billiards, J. Stat. Phys. 94 (1999), no. 3-4, 513-556. · Zbl 1047.37503
[91] Cher-Young N. Chernov and L.-S. Young, Decay of correlations for Lorentz gases and hard balls, Encyclopaedia Math. Sci., vol. 101, Springer, Berlin, 2000, 89-120. · Zbl 0977.37001
[92] Cher06 N. Chernov, Advanced statistical properties of dispersing billiards, J. Stat. Phys. 122 (2006), no. 6, 1061-1094. · Zbl 1098.82020
[93] AvGoYo06 A. Avila, S. Gou\`“ezel, and J.-C. Yoccoz, Exponential mixing for the Teichm\'”uller flow, Publ. Math. Inst. Hautes \'Etudes Sci. 104 (2006), 143-211. · Zbl 1263.37051
[94] Athreya J. S. Athreya, Quantitative recurrence and large deviations for Teichm\"uller geodesic flow, Geom. Dedicata 119 (2006), no. 1, 121-140. · Zbl 1108.32007
[95] Ara-Buf V. Araujo and A. Bufetov, A large deviations bound for the Teichm\"uller flow on the moduli space of abelian differentials Ergodic Theory Dynam. Systems 31 (2011), no. 4, 1043-1071. · Zbl 1223.37027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.