×

Exponential decay of random correlations for random Anosov systems mixing on fibers. (English) Zbl 1535.37058

A random dynamical system is usually modeled by a skew product map on an product space of \[ S:\Omega\times M \to \Omega\times M, S(\omega, x) =(\theta\omega, f_\omega(x)), \] where \((\Omega, \theta)\) is a dynamical system preserving a probability measure \(P\) called driving system, or external force, \(f_\omega:M\to M\) is a fiber map for every \(\omega\in \Omega\) which is the object of interest of this paper. The author considers fiberwise mixing random Anosov systems, which means that for every \((\omega, x)\in \Omega\times M\) there exists a continuous splitting \(E^s(\omega, x)^s\oplus E^c(\omega, x)=T_xM\) such that \(Df_\omega\) is a uniform contraction on \(E^s(\omega, x)^s\) and a uniform expansion on \(E^s(\omega, x)^u\). Under additional assumption on the fiberwise topological mixing, which is an adaptation of the usual topological mixing, the author obtains exponential decay rates for future and past correlations. He uses cone technique to prove the necessary estimates.

MSC:

37H05 General theory of random and stochastic dynamical systems
37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces
37A25 Ergodicity, mixing, rates of mixing
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37C40 Smooth ergodic theory, invariant measures for smooth dynamical systems
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)

References:

[1] Alves, J. F.; Bahsoun, W.; Ruziboev, M., Almost sure rates of mixing for partially hyperbolic attractors. J. Differ. Equ., 98-157 (2022) · Zbl 1490.37004
[2] Alves, J. F.; Pinheiro, V., Slow rates of mixing for dynamical systems with hyperbolic structures. J. Stat. Phys., 3, 505-534 (2008) · Zbl 1144.82324
[3] Armando, A.; Júnior, C., Backward inducing and exponential decay of correlations for partially hyperbolic attractors. Isr. J. Math., 1, 29-75 (2002) · Zbl 1186.37041
[4] Arnold, L., Random Dynamical Systems. Springer Monographs in Mathematics (1998), Springer-Verlag: Springer-Verlag Berlin · Zbl 0906.34001
[5] Bahsoun, W.; Bose, C.; Ruziboev, M., Quenched decay of correlations for slowly mixing systems. Trans. Am. Math. Soc., 9, 6547-6587 (2019) · Zbl 1429.37005
[6] Baladi, V., Positive Transfer Operators and Decay of Correlations, vol. 16 (2000), World Scientific · Zbl 1012.37015
[7] Baladi, V.; Benedicks, M.; Maume-Deschamps, V., Almost sure rates of mixing for i.i.d. unimodal maps. Ann. Sci. Éc. Norm. Supér. (4), 1, 77-126 (2002) · Zbl 1037.37003
[8] Baladi, V.; Kondah, A.; Schmitt, B., Random correlations for small perturbations of expanding maps. Random Comput. Dyn., 2-3, 179-204 (1996) · Zbl 0881.58054
[9] Bowen, R., Ergodic theory of axiom a diffeomorphisms, 90-107
[10] Buzzi, J., Exponential decay of correlations for random Lasota-Yorke maps. Commun. Math. Phys., 1, 25-54 (1999) · Zbl 0974.37038
[11] Castro, A.; Nascimento, T., Statistical properties of the maximal entropy measure for partially hyperbolic attractors. Ergod. Theory Dyn. Syst., 4, 1060 (2017) · Zbl 1381.37040
[12] Chernov, N., Advanced statistical properties of dispersing billiards. J. Stat. Phys., 6, 1061-1094 (2006) · Zbl 1098.82020
[13] Chernov, N.; Dolgopyat, D., Brownian Brownian Motion-I (2009), American Mathematical Soc. · Zbl 1173.60003
[14] Chernov, N.; Zhang, H.-K., On statistical properties of hyperbolic systems with singularities. J. Stat. Phys., 4, 615-642 (2009) · Zbl 1181.37052
[15] Crauel, H., Random Probability Measures on Polish Spaces, vol. 11 (2002), CRC Press · Zbl 1031.60041
[16] Crovisier, S.; Potrie, R., Introduction to partially hyperbolic dynamics, 1
[17] de Guzmán, M., Differentiation of Integrals in \(R^n\). Lecture Notes in Mathematics (1975), Springer-Verlag: Springer-Verlag Berlin-New York, With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón · Zbl 0327.26010
[18] De Simoi, J.; Liverani, C., Statistical properties of mostly contracting fast-slow partially hyperbolic systems. Invent. Math., 1 (2016) · Zbl 1385.37044
[19] Dolgopyat, D., On dynamics of mostly contracting diffeomorphisms. Commun. Math. Phys., 1, 181-201 (2000) · Zbl 0964.37020
[20] Gundlach, V. M.; Kifer, Y., Random hyperbolic systems, 117-145 · Zbl 0933.37056
[21] Hirsch, M. W., Differential Topology. Graduate Texts in Mathematics (1976), Springer-Verlag: Springer-Verlag New York-Heidelberg · Zbl 0356.57001
[22] Huang, W.; Lian, Z.; Lu, K., Ergodic theory of random Anosov systems mixing on fibers (2019), arXiv preprint
[23] Kato, T., Perturbation Theory for Linear Operators. Classics in Mathematics (1995), Springer-Verlag: Springer-Verlag Berlin, Reprint of the 1980 edition · Zbl 0836.47009
[24] Katok, A.; Hasselblatt, B., Introduction to the Modern Theory of Dynamical Systems. Encyclopedia of Mathematics and Its Applications. (1995), Cambridge University Press: Cambridge University Press Cambridge, With a supplementary chapter by Katok and Leonardo Mendoza · Zbl 0878.58020
[25] Kifer, Y., Thermodynamic formalism for random transformations revisited. Stoch. Dyn., 01, 77-102 (2008) · Zbl 1170.37019
[26] Korepanov, A.; Kosloff, Z.; Melbourne, I., Explicit coupling argument for non-uniformly hyperbolic transformations. Proc. R. Soc. Edinb., Sect. A, Math., 1, 101-130 (2019) · Zbl 1430.37026
[27] Li, X.; Vilarinho, H., Almost sure mixing rates for non-uniformly expanding maps. Stoch. Dyn., 04 (2018) · Zbl 1394.37080
[28] Lian, Z.; Liu, P.; Lu, K., SRB measures for a class of partially hyperbolic attractors in Hilbert spaces. J. Differ. Equ., 2, 1532-1603 (2016) · Zbl 1362.37155
[29] Liu, P.-D.; Qian, M., Smooth Ergodic Theory of Random Dynamical Systems (2006), Springer
[30] Liverani, C., Decay of correlations. Ann. Math., 2, 239-301 (1995) · Zbl 0871.58059
[31] Mañé, R., Ergodic Theory and Differentiable Dynamics. Ergebnisse der Mathematik und Ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3) (1987), Springer-Verlag: Springer-Verlag Berlin, Translated from the Portuguese by Silvio Levy · Zbl 0616.28007
[32] Pesin, Y.; Senti, S.; Zhang, K., Thermodynamics of the katok map. Ergod. Theory Dyn. Syst., 3, 764-794 (2019) · Zbl 1412.37043
[33] Pesin, Y. B., Lectures on Partial Hyperbolicity and Stable Ergodicity. Zurich Lectures in Advanced Mathematics (2004), European Mathematical Society (EMS): European Mathematical Society (EMS) Zürich · Zbl 1098.37024
[34] Pugh, C.; Shub, M.; Wilkinson, A., Hölder foliations. Duke Math. J., 3, 517-546 (1997) · Zbl 0877.58045
[35] Ruelle, D., Thermodynamic Formalism. Encyclopedia of Mathematics and Its Applications (1978), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass · Zbl 0401.28016
[36] Ruziboev, M., Almost sure rates of mixing for random intermittent maps, 141-152 · Zbl 1403.37046
[37] Shub, M., Global Stability of Dynamical Systems (1987), Springer-Verlag: Springer-Verlag New York, With the collaboration of Albert Fathi and Rémi Langevin, Translated from the French by Joseph Christy · Zbl 0606.58003
[38] Stadlbauer, M.; Suzuki, S.; Varandas, P., Thermodynamic formalism for random non-uniformly expanding maps. Commun. Math. Phys., 1, 369-427 (2021) · Zbl 1476.37054
[39] Viana, M., Stochastic Dynamics of Deterministic Systems, vol. 21 (1997), IMPA: IMPA Rio de Janeiro
[40] Wang, Q.; Young, L.-S., Dynamical profile of a class of rank-one attractors. Ergod. Theory Dyn. Syst., 4, 1221-1264 (2013) · Zbl 1276.37011
[41] Young, L.-S., Ergodic theory of differentiable dynamical systems, 293-336 · Zbl 0830.58020
[42] Young, L.-S., Statistical properties of dynamical systems with some hyperbolicity. Ann. Math., 3, 585-650 (1998) · Zbl 0945.37009
[43] Young, L.-S., Recurrence times and rates of mixing. Isr. J. Math., 1, 153-188 (1999) · Zbl 0983.37005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.