×

A vector-valued almost sure invariance principle for hyperbolic dynamical systems. (English) Zbl 1176.37006

Let \(M\) be a manifold, and \(f: M\to M\) be a \(C^1\) diffeomorphism with a nontrivial uniformly hyperbolic basic set \(X\subset M\) (meaning mainly that it obeys axiom A and possesses a dense orbit with moreover some maximality). Let also \(Y\) be an equilibrium measure corresponding to a Hölder potential, and \(\varphi: X\to \mathbb{R}^d\) be a mean zero Hölder observable. The main result asserts that, as \(N\to\infty\),
\[ \sum^N_{n=1} \varphi_0 f^n= W_N+O(N^{{2d+3\over 4d+ 7}+\varepsilon}), \]
almost everywhere for any \(\varepsilon> 0\), \((W_t)\) being some \(d\)-dimensional Brownian motion.
This result is extended then to a non-uniformly hyperbolic setting, under the assumption that the return time function (in \(X\)) lies in \(L^p\), for some \(p> 2\).
This general result is applied to a planar periodic Lorentz gas, studied by Sinaï, i.e. a 3-dimensional flow \((q_t,v_t)\in (\mathbb{R}^2\setminus E)\times\mathbb{S}^1\), where \(E\) is a periodic array of disjoint convex \(C^3\) regions, such that the time between collisions with \(\partial E\) is uniformly bounded: then there exists a nondegenerate 2-dimensional Brownian motion \((W_t)\) , such that for almost every initial condition, \(q_t= W_t+ O(t^{7/15+\varepsilon})\) as \(t\to\infty\), for any \(\varepsilon> 0\).
An almost sure functional law of the iterated logarithm and refinement of it, for example, can also be deduced from the general main result got by the authors.
The probabilistic proof proceeds by a careful study and use of a mixing property, and by blocking arguments, to reduce the case of sums of weakly dependent random variables to the martingale case.

MSC:

37A50 Dynamical systems and their relations with probability theory and stochastic processes
37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37D25 Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.)
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
60F17 Functional limit theorems; invariance principles

References:

[1] Aaronson, J. (1997). An Introduction to Infinite Ergodic Theory. Mathematical Surveys and Monographs 50 . Amer. Math. Soc., Providence, RI. · Zbl 0882.28013
[2] Aaronson, J. and Denker, M. (2001). Local limit theorems for partial sums of stationary sequences generated by Gibbs-Markov maps. Stoch. Dyn. 1 193-237. · Zbl 1039.37002 · doi:10.1142/S0219493701000114
[3] Berger, E. (1990). An almost sure invariance principle for stationary ergodic sequences of Banach space valued random variables. Probab. Theory Related Fields 84 161-201. · Zbl 0695.60041 · doi:10.1007/BF01197844
[4] Berkes, I. and Philipp, W. (1979). Approximation theorems for independent and weakly dependent random vectors. Ann. Probab. 7 29-54. · Zbl 0392.60024 · doi:10.1214/aop/1176995146
[5] Bunimovich, L. A. and Sinaĭ, Y. G. (1980/81). Statistical properties of Lorentz gas with periodic configuration of scatterers. Comm. Math. Phys. 78 479-497. · Zbl 0459.60099 · doi:10.1007/BF02046760
[6] Bunimovich, L. A., Sinaĭ, Y. G. and Chernov, N. I. (1991). Statistical properties of two-dimensional hyperbolic billiards. Uspekhi Mat. Nauk 46 43-92, 192. · Zbl 0780.58029 · doi:10.1070/RM1991v046n04ABEH002827
[7] Burkholder, D. L. (1973). Distribution function inequalities for martingales. Ann. Probab. 1 19-42. · Zbl 0301.60035 · doi:10.1214/aop/1176997023
[8] Chernov, N. (2006). Advanced statistical properties of dispersing billiards. J. Stat. Phys. 122 1061-1094. · Zbl 1098.82020 · doi:10.1007/s10955-006-9036-8
[9] Chernov, N. and Dolgopyat, D. (2006). Hyperbolic billiards and statistical physics. In International Congress of Mathematicians II 1679-1704. Eur. Math. Soc., Zürich. · Zbl 1118.37019
[10] Chernov, N. and Young, L. S. (2000). Decay of correlations for Lorentz gases and hard balls. In Hard Ball Systems and the Lorentz Gas. Encyclopaedia Math. Sci. 101 89-120. Springer, Berlin. · Zbl 0977.37001
[11] Chernov, N. and Zhang, H.-K. (2005). Billiards with polynomial mixing rates. Nonlinearity 18 1527-1553. · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[12] Chow, Y. S. (1965). Local convergence of martingales and the law of large numbers. Ann. Math. Statist. 36 552-558. · Zbl 0134.34003 · doi:10.1214/aoms/1177700166
[13] Conze, J.-P. and Le Borgne, S. (2001). Méthode de martingales et flot géodésique sur une surface de courbure constante négative. Ergodic Theory Dynam. Systems 21 421-441. · Zbl 0983.37034 · doi:10.1017/S0143385701001213
[14] Csörgő, M. and Révész, P. (1975). A new method to prove Strassen type laws of invariance principle. II. Z. Wahrsch. Verw. Gebiete 31 261-269. · Zbl 0283.60024 · doi:10.1007/BF00532866
[15] Davydov, J. A. (1970). The invariance principle for stationary processes. Teor. Verojatnost. i Primenen. 15 498-509. · Zbl 0209.48904
[16] Denker, M. and Philipp, W. (1984). Approximation by Brownian motion for Gibbs measures and flows under a function. Ergodic Theory Dynam. Systems 4 541-552. · Zbl 0554.60077 · doi:10.1017/S0143385700002637
[17] Dolgopyat, D. (2004). Limit theorems for partially hyperbolic systems. Trans. Amer. Math. Soc. 356 1637-1689 (electronic). · Zbl 1031.37031 · doi:10.1090/S0002-9947-03-03335-X
[18] Dvoretzky, A. (1972). Asymptotic normality for sums of dependent random variables. In Proc. 6th Berkeley Sympos. Math. Statist. Probab. II 513-535. Univ. California Press, Berkeley. · Zbl 0256.60009
[19] Feller, W. (1966). An Introduction to Probability Theory and Its Applications . II . Wiley, New York. · Zbl 0138.10207
[20] Field, M., Melbourne, I. and Török, A. (2003). Decay of correlations, central limit theorems and approximation by Brownian motion for compact Lie group extensions. Ergodic Theory Dynam. Systems 23 87-110. · Zbl 1140.37315 · doi:10.1017/S0143385702000901
[21] Gál, I. S. and Koksma, J. F. (1950). Sur l’ordre de grandeur des fonctions sommables. Nederl. Akad. Wetensch. Proc. 53 638-653. [ Indagationes Math. 12 (1950) 192-207.] · Zbl 0041.02406
[22] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application . Academic Press, New York. · Zbl 0462.60045
[23] Hofbauer, F. and Keller, G. (1982). Ergodic properties of invariant measures for piecewise monotonic transformations. Math. Z. 180 119-140. · Zbl 0485.28016 · doi:10.1007/BF01215004
[24] Holland, M. and Melbourne, I. (2007). Central limit theorems and invariance principles for Lorenz attractors. J. Lond. Math. Soc. 76 345-364. · Zbl 1126.37006 · doi:10.1112/jlms/jdm060
[25] Jain, N. C., Jogdeo, K. and Stout, W. F. (1975). Upper and lower functions for martingales and mixing processes. Ann. Probab. 3 119-145. · Zbl 0301.60026 · doi:10.1214/aop/1176996453
[26] Kiefer, J. (1972). Skorohod embedding of multivariate RV’s, and the sample DF. Z. Wahrsch. Verw. Gebiete 24 1-35. · Zbl 0267.60034 · doi:10.1007/BF00532460
[27] Kuelbs, J. and Philipp, W. (1980). Almost sure invariance principles for partial sums of mixing B -valued random variables. Ann. Probab. 8 1003-1036. · Zbl 0451.60008 · doi:10.1214/aop/1176994565
[28] Melbourne, I. (2007). Rapid decay of correlations for nonuniformly hyperbolic flows. Trans. Amer. Math. Soc. 359 2421-2441 (electronic). · Zbl 1184.37024 · doi:10.1090/S0002-9947-06-04267-X
[29] Melbourne, I. and Nicol, M. (2005). Almost sure invariance principle for nonuniformly hyperbolic systems. Comm. Math. Phys. 260 131-146. · Zbl 1084.37024 · doi:10.1007/s00220-005-1407-5
[30] Melbourne, I. and Török, A. (2002). Central limit theorems and invariance principles for time-one maps of hyperbolic flows. Comm. Math. Phys. 229 57-71. · Zbl 1098.37501 · doi:10.1007/s00220-002-0676-5
[31] Melbourne, I. and Török, A. (2004). Statistical limit theorems for suspension flows. Israel J. Math. 144 191-209. · Zbl 1252.37010 · doi:10.1007/BF02916712
[32] Morales, C. A., Pacifico, M. J. and Pujals, E. R. (1999). Singular hyperbolic systems. Proc. Amer. Math. Soc. 127 3393-3401. JSTOR: · Zbl 0924.58068 · doi:10.1090/S0002-9939-99-04936-9
[33] Morrow, G. and Philipp, W. (1982). An almost sure invariance principle for Hilbert space valued martingales. Trans. Amer. Math. Soc. 273 231-251. JSTOR: · Zbl 0508.60014 · doi:10.2307/1999203
[34] Nagayama, N. (2004). Almost sure invariance principle for dynamical systems with stretched exponential mixing rates. Hiroshima Math. J. 34 371-411. · Zbl 1064.60050
[35] Parry, W. and Pollicott, M. (1990). Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187 - 188 268. · Zbl 0726.58003
[36] Peligrad, M., Utev, S. and Wu, W. B. (2007). A maximal L p -inequality for stationary sequences and its applications. Proc. Amer. Math. Soc. 135 541-550 (electronic). · Zbl 1107.60011 · doi:10.1090/S0002-9939-06-08488-7
[37] Philipp, W. and Stout, W. F. (1975). Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 161 . Amer. Math. Soc., Providence, RI. · Zbl 0361.60007
[38] Sinaĭ, J. G. (1970). Dynamical systems with elastic reflections. Ergodic properties of dispersing billiards. Uspehi Mat. Nauk 25 141-192. · Zbl 0252.58005
[39] Smale, S. (1967). Differentiable dynamical systems. Bull. Amer. Math. Soc. 73 747-817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[40] Strassen, V. (1964). An invariance principle for the law of the iterated logarithm. Z. Wahrsch. Verw. Gebiete 3 211-226. · Zbl 0132.12903 · doi:10.1007/BF00534910
[41] Strassen, V. (1967). Almost sure behavior of sums of independent random variables and martingales. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability ( Berkeley , Calif. , 1965/66 ) II 315-343. Univ. California Press, Berkeley. · Zbl 0201.49903
[42] Szász, D. and Varjú, T. (2007). Limit laws and recurrence for the planar Lorentz process with infinite horizon. J. Stat. Phys. 129 59-80. · Zbl 1128.82011 · doi:10.1007/s10955-007-9367-0
[43] Volkonskiĭ, V. A. and Rozanov, Y. A. (1959). Some limit theorems for random functions. I. Theor. Probab. Appl. 4 178-197. · Zbl 0092.33502 · doi:10.1137/1104015
[44] Young, L.-S. (1998). Statistical properties of dynamical systems with some hyperbolicity. Ann. of Math. 147 585-650. JSTOR: · Zbl 0945.37009 · doi:10.2307/120960
[45] Young, L.-S. (1999). Recurrence times and rates of mixing. Israel J. Math. 110 153-188. · Zbl 0983.37005 · doi:10.1007/BF02808180
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.