×

Rates in almost sure invariance principle for nonuniformly hyperbolic maps. (English) Zbl 07923626

Summary: We prove the almost sure invariance principle (ASIP) with close to optimal error rates for nonuniformly hyperbolic maps. We do not assume exponential contraction along stable leaves, therefore our result covers in particular slowly mixing invertible dynamical systems as Bunimovich flowers, billiards with flat points as in Chernov and Zhang (Stoch Dyn 5:535-553, 2005a, Nonlinearity 18:1527-1553, 2005b) and Wojtkowski’ (Commun Math Phys 126:507-533, 1990) system of two falling balls.For these examples, the ASIP is a new result, not covered by prior works for various reasons, notably because in absence of exponential contraction along stable leaves, it is challenging to employ the so-called Sinai’s trick (Sinai in Russ Math Surv 27:21-70, 1972; Bowen, Lecture Notes in Math vol. 470 (1975)) of reducing a nonuniformly hyperbolic system to a nonuniformly expanding one. Our strategy follows our previous papers on the ASIP for nonuniformly expanding maps, where we build a semiconjugacy to a specific renewal Markov shift and adapt the argument of Berkes et al. (Ann Probab 42:794-817, 2014). The main difference is that now the Markov shift is two-sided, the observables depend on the full trajectory, both the future and the past.

MSC:

37Dxx Dynamical systems with hyperbolic behavior
60F17 Functional limit theorems; invariance principles
60G10 Stationary stochastic processes

References:

[1] Bálint, P.; Borbély, G.; Varga, AN, Statistical properties of the system of two falling balls, Chaos, 22, 2012 · Zbl 1331.37005 · doi:10.1063/1.3692973
[2] Bálint, P., Zhang, H.K.: private communication
[3] Berkes, I.; Liu, W.; Wu, W., Komlós-Major-Tusnády approximation under dependence, Ann. Probab., 42, 794-817, 2014 · Zbl 1308.60037 · doi:10.1214/13-AOP850
[4] Berkes, I.; Philipp, W., Approximation theorems for independent and weakly dependent random vectors, Ann. Probab., 7, 29-54, 1979 · Zbl 0392.60024 · doi:10.1214/aop/1176995146
[5] Bingham, NH; Goldie, CM; Teugels, JL, Regular Variation, 1987, Cambridge: Cambridge University Press, Cambridge · Zbl 0617.26001 · doi:10.1017/CBO9780511721434
[6] Bowen, R., Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Lecture Notes in Math, 1975, Berlin: Springer, Berlin · Zbl 0308.28010 · doi:10.1007/BFb0081279
[7] Bunimovich, LA, The ergodic properties of billiards that are nearly scattering, Sov. Math. Dokl., 14, 1136-1139, 1973 · Zbl 0289.28012
[8] Burkholder, DL, A sharp inequality for martingale transforms, Ann. Probab., 7, 5, 858-863, 1979 · Zbl 0416.60047 · doi:10.1214/aop/1176994944
[9] Chernov, N.; Zhang, H-K, Billiards with polynomial mixing rates, Nonlinearity, 18, 1527-1553, 2005 · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[10] Chernov, N.; Zhang, H-K, Improved estimates for correlations in billiards, Commun. Math. Phys., 277, 305-321, 2008 · Zbl 1143.37024 · doi:10.1007/s00220-007-0360-x
[11] Cuny, C.; Dedecker, J.; Korepanov, A.; Merlevède, F., Rates in almost sure invariance principle for slowly mixing dynamical systems, Ergod. Theory Dyn. Syst., 40, 2317-2348, 2020 · Zbl 1448.37008 · doi:10.1017/etds.2019.2
[12] Cuny, C.; Dedecker, J.; Korepanov, A.; Merlevède, F., Rates in almost sure invariance principle for quickly mixing dynamical systems, Stoch. Dyn., 20, 1, 2050002, 2020 · Zbl 1434.60104 · doi:10.1142/S0219493720500021
[13] Dedecker, J., Merlevède, F., Rio, E.: Deviation inequalities for dependent sequences with applications to strong approximations. Stoch. Process. Appl. 174 (2024), Paper No. 104377 · Zbl 07879391
[14] Esseen, CG; Janson, S., On moment conditions for normed sums of independent variables and martingale differences, Stoch. Process. Appl., 19, 1, 173-182, 1985 · Zbl 0554.60050 · doi:10.1016/0304-4149(85)90048-1
[15] Fleming-Vázquez, N., Functional correlation bounds and optimal iterated moment bounds for slowly-mixing nonuniformly hyperbolic maps, Commun. Math. Phys., 391, 173-198, 2022 · Zbl 1494.37017 · doi:10.1007/s00220-022-04325-w
[16] Gordin, M.I.: Central limit theorems for stationary processes without the assumption of finite variance. In: Abstracts of Communications, T.I:A-K. International Conference on Probability Theory and Mathematical Statistics, June 25-30, Vilnius, pp. 173-174 (1973)
[17] Gouëzel, S., Almost sure invariance principle for dynamical systems by spectral methods, Ann. Probab., 38, 1639-1671, 2010 · Zbl 1207.60026 · doi:10.1214/10-AOP525
[18] Korepanov, A., Equidistribution for nonuniformly expanding dynamical systems, and application to the almost sure invariance principle, Commun. Math. Phys., 359, 1123-1138, 2018 · Zbl 1396.37038 · doi:10.1007/s00220-017-3062-z
[19] Korepanov, A., Rates in almost sure invariance principle for dynamical systems with some hyperbolicity, Commun. Math. Phys., 363, 173-190, 2018 · Zbl 1404.37031 · doi:10.1007/s00220-018-3234-5
[20] Kuelbs, J.; Philipp, W., Almost sure invariance principles for partial sums of mixing B-valued random variables, Ann. Probab., 8, 1003-1036, 1980 · Zbl 0451.60008 · doi:10.1214/aop/1176994565
[21] Lindvall, T., On coupling of discrete renewal processes, Z. Wahrscheinlichkeitstheor. verw. Geb., 48, 57-70, 1979 · Zbl 0388.60088 · doi:10.1007/BF00534882
[22] Melbourne, I.; Nicol, M., Almost sure invariance principle for nonuniformly hyperbolic systems, Commun. Math. Phys., 260, 131-146, 2005 · Zbl 1084.37024 · doi:10.1007/s00220-005-1407-5
[23] Melbourne, I.; Nicol, M., A vector-valued almost sure invariance principle for hyperbolic dynamical systems, Ann. Probab., 37, 478-505, 2009 · Zbl 1176.37006 · doi:10.1214/08-AOP410
[24] Melbourne, I., Varandas, P.: A note on statistical properties for nonuniformly hyperbolic systems with slow contraction and expansion, Stoch. Dyn. 16 (2016) · Zbl 1362.37073
[25] Merlevède, F.; Rio, E., Strong approximation of partial sums under dependence conditions with application to dynamical systems, Stoch. Process. Appl., 122, 1, 386-417, 2012 · Zbl 1230.60034 · doi:10.1016/j.spa.2011.08.012
[26] Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Am. Math. Soc. Mem. 161 (1975) · Zbl 0361.60007
[27] Rio, A.: Asymptotic theory of weakly dependent random processes. Translated from the 2000 French edition. Probability Theory and Stochastic Modelling, 80. Springer, Berlin, xviii+204 pp (2017) · Zbl 1378.60003
[28] Rokhlin, VA, Exact endomorphisms of a Lebesgue space, Am. Math. Soc., 39, 1-36, 1964 · Zbl 0154.15703
[29] Sarig, O.: Lecture notes on ergodic theory. https://www.weizmann.ac.il/math/sarigo/lecture-notes
[30] Sinaĭ, YG, Gibbs measures in ergodic theory, Russ. Math. Surv., 27, 21-70, 1972 · Zbl 0255.28016 · doi:10.1070/RM1972v027n04ABEH001383
[31] Wojtkowski, MP, A system of one dimensional balls with gravity, Commun. Math. Phys., 126, 507-533, 1990 · Zbl 0695.70007 · doi:10.1007/BF02125698
[32] Young, L-S, Statistical properties of dynamical systems with some hyperbolicity, Ann. Math., 147, 585-650, 1998 · Zbl 0945.37009 · doi:10.2307/120960
[33] Zaitsev, AY, The accuracy of strong Gaussian approximation for sums of independent random vectors, Russ. Math. Surv., 68, 721-761, 2013 · Zbl 1287.60044 · doi:10.1070/RM2013v068n04ABEH004851
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.