×

Ergodicity of the generalized lemon billiards. (English) Zbl 1331.37006

Summary: In this paper, we study a two-parameter family of convex billiard tables, by taking the intersection of two round disks (with different radii) in the plane. These tables give a generalization of the one-parameter family of lemon-shaped billiards. Initially, there is only one ergodic table among all lemon tables. In our generalized family, we observe numerically the prevalence of ergodicity among the some perturbations of that table. Moreover, numerical estimates of the mixing rate of the billiard dynamics on some ergodic tables are also provided.{
©2013 American Institute of Physics}

MSC:

37A25 Ergodicity, mixing, rates of mixing
37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37D05 Dynamical systems with hyperbolic orbits and sets
37M05 Simulation of dynamical systems
Full Text: DOI

References:

[1] Altmann, E. G.; Friedrich, T.; Motter, A. E.; Kantz, H.; Richter, A., Prevalence of marginally unstable periodic orbits in chaotic billiards, Phys. Rev. E, 77, 016205 (2008) · doi:10.1103/PhysRevE.77.016205
[2] Armstead, D.; Hunt, B.; Ott, E., Power-law decay and self-similar distribution in stadium-type billiards, Physica D, 193, 96-127 (2004) · Zbl 1059.37026 · doi:10.1016/j.physd.2004.01.013
[3] Bálint, P.; Halász, M.; Hernández-Tahuilán, J.; Sanders, D., Chaos and stability in a two-parameter family of convex billiard tables, Nonlinearity, 24, 1499-1521 (2011) · Zbl 1223.37046 · doi:10.1088/0951-7715/24/5/006
[4] Benettin, G.; Strelcyn, J. M., Numerical experiments on the free motion of a point mass moving in a plane convex region: Stochastic transition and entropy, Phys. Rev. A, 17, 773-785 (1978) · doi:10.1103/PhysRevA.17.773
[5] Bunimovich, L. A., On ergodic properties of certain billiards, Funct. Anal. Appl., 8, 254-255 (1974) · Zbl 0303.28018 · doi:10.1007/BF01075700
[6] Bunimovich, L. A., On Absolutely Focusing Mirrors, 62-82 (1992) · Zbl 0772.58027
[7] Bunimovich, L. A., Mushrooms and other billiards with divided phase space, Chaos, 11, 802-808 (2001) · Zbl 1080.37582 · doi:10.1063/1.1418763
[8] Chernov, N. and Markarian, R., “Chaotic billiards,” Mathematical Surveys Monograph No. 127 (American Mathematical Society, Providence, RI, 2006). · Zbl 1101.37001
[9] Chernov, N.; Zhang, H.-K., Billiards with polynomial mixing rates, Nonlinearity, 18, 1527-1553 (2005) · Zbl 1143.37314 · doi:10.1088/0951-7715/18/4/006
[10] Chernov, N.; Zhang, H.-K., Improved estimates for correlations in billiards, Commun. Math. Phys., 277, 305-321 (2008) · Zbl 1143.37024 · doi:10.1007/s00220-007-0360-x
[11] Dias Carneiro, M. J.; Oliffson Kamphorst, S.; Pintode Carvalho, S., Elliptic islands in strictly convex billiards, Ergod. Theory Dyn. Syst., 23, 799-812 (2003) · Zbl 1065.37039 · doi:10.1017/S0143385702001608
[12] Donnay, V., Using integrability to produce chaos: billiards with positive entropy, Commun. Math. Phys., 141, 225-257 (1991) · Zbl 0744.58041 · doi:10.1007/BF02101504
[13] Foltin, C., Billiards with positive topological entropy, Nonlinearity, 15, 2053-2076 (2002) · Zbl 1014.37025 · doi:10.1088/0951-7715/15/6/314
[14] Hayli, A., Numerical exploration of a family of strictly convex billiards with boundary of class \(C^2\), J. Stat. Phys., 83, 71-79 (1996) · Zbl 1081.37526 · doi:10.1007/BF02183640
[15] Heller, E.; Tomsovic, S., Postmodern quantum mechanics, Phys. Today, 46, 7, 38-46 (1993) · doi:10.1063/1.881358
[16] Hénon, M.; Wisdom, J., The Benettin-Strelcyn oval billiard revisited, Physica D, 8, 157-169 (1983) · Zbl 0538.58032 · doi:10.1016/0167-2789(83)90315-9
[17] Lopac, V.; Mrkonjic, I.; Radic, D., Classical and quantum chaos in the generalized parabolic lemon-shaped billiards, Phys. Rev. E, 59, 303-311 (1999) · doi:10.1103/PhysRevE.59.303
[18] Lopac, V.; Mrkonjic, I.; Radic, D., Chaotic behavior in lemon-shaped billiards with elliptical and hyperbolic boundary arcs, Phys. Rev. E, 64, 016214 (2001) · doi:10.1103/PhysRevE.64.016214
[19] Makino, H.; Harayama, T.; Aizawa, Y., Quantum-classical correspondences of the Berry-Robnik parameter through bifurcations in lemon billiard systems, Phys. Rev. E, 63, 056203 (2001) · doi:10.1103/PhysRevE.63.056203
[20] Markarian, R., Billiards with Pesin region of measure one, Commun. Math. Phys., 118, 87-97 (1988) · Zbl 0653.58015 · doi:10.1007/BF01218478
[21] Markarian, R., Billiards with polynomial decay of correlations, Ergod. Theory Dyn. Syst., 24, 177-197 (2004) · Zbl 1115.37037 · doi:10.1017/S0143385703000270
[22] Oliffson Kamphorst, S.; Pinto-de-Carvalho, S., The first Birkhoff coefficient and the stability of 2-periodic orbits on billiards, Exp. Math., 14, 3, 299-306 (2005) · Zbl 1159.37423 · doi:10.1080/10586458.2005.10128923
[23] Ree, S.; Reichl, L. E., Classical and quantum chaos in a circular billiard with a straight cut, Phys. Rev. E, 60, 1607 (1999) · doi:10.1103/PhysRevE.60.1607
[24] Saito, N.; Hirooka, H.; Ford, J.; Vivaldi, F.; Walker, G. H., Numerical study of billiard motion in an annulus bounded by non-concentric circles, Physica D, 5, 273-286 (1982) · Zbl 1194.65125 · doi:10.1016/0167-2789(82)90022-7
[25] Sinaǐ, Y., Dynamical systems with elastic reflections, Russ. Math. Surveys, 25, 137-191 (1970) · Zbl 0263.58011 · doi:10.1070/RM1970v025n02ABEH003794
[26] Wojtkowski, M., Principles for the design of billiards with nonvanishing Lyapunov exponents, Commun. Math. Phys., 105, 391-414 (1986) · Zbl 0602.58029 · doi:10.1007/BF01205934
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.