×

Slow convergence in generalized central limit theorems. (Convergence lente dans les théorèmes centraux limites généralisés.) (English. French summary) Zbl 1404.60033

Let \((X_n)_{n\in\mathbb N}\) be i.i.d.real valued random variables and assume that \((n^{1/\alpha}L(n))^{-1}\sum_{k=1}^nX_k\) with distribution function (df) \(F_n\) converges in distribution to a symmetric \(\alpha\)-stable random variable with df \(F\) for some \(0<\alpha\leq2\) and a non-trivial slowly varying function \(L\). The authors show that \(\limsup_{n\to\infty}\gamma_n/|1-L(n)/L(2n)|>0\) for either \(\gamma_n=\|F_n-F\|_\infty\) or \(\gamma_n=\|F_{2n}-F\|_\infty\). The same holds for corresponding density functions instead of df provided the law of \(X_1\) is absolutely continuous. From this the authors conclude that the rate is at best logarithmic, since for a slowly varying function \(\limsup_{n\to\infty}(\log n)^{1+\varepsilon}/|1-L(n)/L(2n)|>0\) if \(L(x)\to0\) or \(L(x)\to\infty\).

MSC:

60F05 Central limit and other weak theorems
60G50 Sums of independent random variables; random walks
60G52 Stable stochastic processes

References:

[1] Bálint, P.; Gouëzel, S., Limit theorems in the stadium billiard, Commun. Math. Phys., 263, 2, 461-512 (2006) · Zbl 1170.37314
[2] Börgers, C.; Greengard, C.; Thomann, E., The diffusion limit of free molecular flow in thin plane channels, SIAM J. Appl. Math., 52, 4, 1057-1075 (1992) · Zbl 0761.76089
[3] Boutsikas, M. V.; Koutras, M. V., Compound Poisson approximation for sums of dependent random variables, (Charalambides, C. A.; Koutras, M. V.; Balakrishnan, N., Probability and Statistical Models with Applications: A Volume in Honour of Prof. T. Cacoullos (2001)), 63-86
[4] Christoph, G.; Wolf, W., Convergence Theorems with a Stable Limit Law (1992), Akademie Verlag: Akademie Verlag Berlin · Zbl 0773.60012
[5] Chumley, T.; Feres, R.; Zhang, H.-K., Diffusivity in multiple scattering systems, Trans. Amer. Math. Soc., 368, 1, 109-148 (2016) · Zbl 1332.60134
[6] Cristadoro, G.; Gilbert, T.; Lenci, M.; Sanders, D. P., Measuring logarithmic corrections to normal diffusion in infinite-horizon billiards, Phys. Rev. E, 90, 2, Article 022106 pp. (2014)
[7] Dettmann, C. P., Diffusion in the Lorentz gas, Commun. Theor. Phys., 62, 4, 521-540 (2014) · Zbl 1301.37022
[8] Gouëzel, S., Central limit theorem and stable laws for intermittent maps, Probab. Theory Relat. Fields, 128, 1, 82-122 (2004) · Zbl 1038.37007
[9] Jiménez, J., Algebraic probability density tails in decaying isotropic two-dimensional turbulence, J. Fluid Mech., 313, 223-240 (1996) · Zbl 0864.76033
[10] Juozulynas, A.; Paulauskas, V., Some remarks on the rate of convergence to stable laws, Lith. Math. J., 38, 4, 335-347 (1998) · Zbl 0984.60031
[11] Kuske, R.; Keller, J. B., Rate of convergence to a stable law, SIAM J. Appl. Math., 61, 4, 1308-1323 (2001) · Zbl 0985.60013
[12] Nándori, P., Recurrence properties of a special type of heavy-tailed random walk, J. Stat. Phys., 142, 2, 342-355 (2011) · Zbl 1223.60021
[13] Nolan, J. P., Bibliography on stable distributions, processes and related topics (2017)
[14] Rachev, S. T., The Methods of Distances in the Theory of Probability and Statistics (2013), Springer Science & Business Media · Zbl 1280.60005
[15] Zolotarev, V. M., One-Dimensional Stable Distributions, Translations of Mathematical Monographs, vol. 65 (1983), American Mathematical Society: American Mathematical Society Providence, RI, USA: Nauka, (in Russian) · Zbl 0523.60003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.