×

Equilibrium states for non-transitive random open and closed dynamical systems. (English) Zbl 1540.37052

Summary: We prove a random Ruelle-Perron-Frobenius theorem and the existence of relative equilibrium states for a class of random open and closed interval maps, without imposing transitivity requirements, such as mixing and covering conditions, which are prevalent in the literature. This theorem provides the existence and uniqueness of random conformal and invariant measures with exponential decay of correlations, and allows us to expand the class of examples of (random) dynamical systems amenable to multiplicative ergodic theory and the thermodynamic formalism. Applications include open and closed non-transitive random maps, and a connection between Lyapunov exponents and escape rates through random holes. We are also able to treat random intermittent maps with geometric potentials.

MSC:

37D35 Thermodynamic formalism, variational principles, equilibrium states for dynamical systems
37H15 Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents
37H12 Random iteration
37E05 Dynamical systems involving maps of the interval

References:

[1] Atnip, J., Froyland, G., González-Tokman, C. and Vaienti, S.. Thermodynamic formalism for random interval maps with holes. Preprint, 2021, arXiv:2103.04712. · Zbl 1481.37032
[2] Atnip, J., Froyland, G., González-Tokman, C. and Vaienti, S.. Thermodynamic formalism for random weighted covering systems. Comm. Math. Phys.386 (2021), 819-902. · Zbl 1481.37032
[3] Atnip, J. and Urbański, M.. Critically finite random maps of an interval. Discrete Contin. Dyn. Syst. Ser. A40(8) (2020), 4839. · Zbl 1455.37036
[4] Baladi, V.. Correlation spectrum of quenched and annealed equilibrium states for random expanding maps. Comm. Math. Phys.186(3) (1997), 671-700. · Zbl 0884.60097
[5] Bogenschütz, T. and Gundlach, V. M.. Ruelle’s transfer operator for random subshifts of finite type. Ergod. Th. & Dynam. Sys.15 (1995), 413-447. · Zbl 0842.58055
[6] Buzzi, J.. Exponential decay of correlations for random Lasota-Yorke maps. Comm. Math. Phys.208(1) (1999), 25-54. · Zbl 0974.37038
[7] Demers, M. F. and Liverani, C.. Projective cones for generalized dispersing billiards. Preprint, 2021, arXiv:2104.06947. · Zbl 1523.37036
[8] Demers, M. F. and Todd, M.. Equilibrium states, pressure and escape for multimodal maps with holes. Israel J. Math.221(1) (2017), 367-424. · Zbl 1377.37055
[9] Demers, M. F. and Todd, M.. Slow and fast escape for open intermittent maps. Comm. Math. Phys.351(2) (2017), 775-835. · Zbl 1380.37007
[10] Dragičević, D., Froyland, G., González-Tokman, C. and Vaienti, S.. A spectral approach for quenched limit theorems for random expanding dynamical systems. Comm. Math. Phys.360(3) (2018), 1121-1187. · Zbl 1401.60032
[11] Froyland, G., Lloyd, S. and Quas, A.. A semi-invertible Oseledets theorem with applications to transfer operator cocycles. Discrete Contin. Dyn. Syst.33(9) (2013), 3835-3860. · Zbl 1405.37057
[12] Gantmacher, F. R.. The Theory of Matrices. Vols. 1, 2. Chelsea Publishing Co., New York, 1959, translated by K. A. Hirsch. · Zbl 0085.01001
[13] Gupta, C., Ott, W. and Török, A.. Memory loss for time-dependent piecewise expanding systems in higher dimension. Math. Res. Lett.20(1) (2013), 141-161. · Zbl 1369.37032
[14] Horan, J.. Asymptotics for the second-largest Lyapunov exponent for some Perron-Frobenius operator cocycles. Nonlinearity34(4) (2021), 2563-2610. · Zbl 1466.37045
[15] Kifer, Y.. Thermodynamic formalism for random transformations revisited. Stoch. Dyn.8(1) (2008), 77-102. · Zbl 1170.37019
[16] Liverani, C. and Maume-Deschamps, V.. Lasota-Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set. Ann. Inst. Henri Poincaré B Probab. Stat.39(3) (2003), 385-412. · Zbl 1021.37002
[17] Liverani, C., Saussol, B. and Vaienti, S.. Conformal measure and decay of correlation for covering weighted systems. Ergod. Th. & Dynam. Sys.18(6) (1998), 1399-1420. · Zbl 0915.58061
[18] Liverani, C., Saussol, B. and Vaienti, S.. A probabilistic approach to intermittency. Ergod. Th. & Dynam. Sys.19(3) (1999), 671-685. · Zbl 0988.37035
[19] Mayer, V. and Urbański, M.. Countable alphabet random subhifts of finite type with weakly positive transfer operator. J. Stat. Phys.160(5) (2015), 1405-1431. · Zbl 1360.37138
[20] Mayer, V., Urbański, M. and Skorulski, B.. Distance Expanding Random Mappings, Thermodynamical Formalism, Gibbs Measures and Fractal Geometry(Lecture Notes in Mathematics, 2036). Springer, Berlin, 2011. · Zbl 1237.37003
[21] Mohapatra, A. and Ott, W.. Memory loss for nonequilibrium open dynamical systems. Discrete Contin. Dyn. Syst.34(9) (2014), 3747-3759. · Zbl 1351.37022
[22] Ott, W., Stenlund, M. and Young, L.-S.. Memory loss for time-dependent dynamical systems. Math. Res. Lett.16(3) (2009), 463-475. · Zbl 1177.37055
[23] Rychlik, M.. Bounded variation and invariant measures. Studia Math.76 (1983), 69-80. · Zbl 0575.28011
[24] Stadlbauer, M., Suzuki, S. and Varandas, P.. Thermodynamic formalism for random non-uniformly expanding maps. Comm. Math. Phys.385 (2021), 369-427. · Zbl 1476.37054
[25] Stenlund, M., Young, L.-S. and Zhang, H.. Dispersing billiards with moving scatterers. Comm. Math. Phys.322(3) (2013), 909-955. · Zbl 1304.37024
[26] Young, L.-S.. Understanding chaotic dynamical systems. Comm. Pure Appl. Math.66(9) (2013), 1439-1463. · Zbl 1305.37004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.