×

Deterministic approximations of random reflectors. (English) Zbl 1408.37063

Summary: Within classical optics, one may add microscopic “roughness” to a macroscopically flat mirror so that parallel rays of a given angle are reflected at different outgoing angles. Taking the limit (as the roughness becomes increasingly microscopic) one obtains a flat surface that reflects randomly, i.e., the transition from incoming to outgoing ray is described by a probability kernel (whose form depends on the nature of the microscopic roughness).
We consider two-dimensional optics (a.k.a. billiards) and show that every random reflector on a line that satisfies a necessary measure-preservation condition (well established in the theory of billiards) can be approximated by deterministic reflectors in this way.

MSC:

37D50 Hyperbolic systems with singularities (billiards, etc.) (MSC2010)

References:

[1] Richard F. Bass, Krzysztof Burdzy, Zhen-Qing Chen, and Martin Hairer, Stationary distributions for diffusions with inert drift, Probab. Theory Related Fields 146 (2010), no. 1-2, 1 – 47. · Zbl 1210.60058 · doi:10.1007/s00440-008-0182-6
[2] S. Chandrasekhar, Radiative transfer, Dover Publications, Inc., New York, 1960. · Zbl 0037.43201
[3] Nikolai Chernov and Roberto Markarian, Chaotic billiards, Mathematical Surveys and Monographs, vol. 127, American Mathematical Society, Providence, RI, 2006. · Zbl 1101.37001
[4] F. Comets and S. Popov, Ballistic regime for random walks in random environment with unbounded jumps and Knudsen billiards. Ann. Inst. H. Poincaré Probab. Statist. (2012) (to appear). · Zbl 1247.60139
[5] Francis Comets, Serguei Popov, Gunter M. Schütz, and Marina Vachkovskaia, Billiards in a general domain with random reflections, Arch. Ration. Mech. Anal. 191 (2009), no. 3, 497 – 537. · Zbl 1186.37049 · doi:10.1007/s00205-008-0120-x
[6] Francis Comets, Serguei Popov, Gunter M. Schütz, and Marina Vachkovskaia, Erratum: Billiards in a general domain with random reflections [MR2481068], Arch. Ration. Mech. Anal. 193 (2009), no. 3, 737 – 738. · Zbl 1173.37319 · doi:10.1007/s00205-009-0236-7
[7] Francis Comets, Serguei Popov, Gunter M. Schütz, and Marina Vachkovskaia, Quenched invariance principle for the Knudsen stochastic billiard in a random tube, Ann. Probab. 38 (2010), no. 3, 1019 – 1061. · Zbl 1200.60091 · doi:10.1214/09-AOP504
[8] Francis Comets, Serguei Popov, Gunter M. Schütz, and Marina Vachkovskaia, Knudsen gas in a finite random tube: transport diffusion and first passage properties, J. Stat. Phys. 140 (2010), no. 5, 948 – 984. · Zbl 1197.82058 · doi:10.1007/s10955-010-0023-8
[9] Steven N. Evans, Stochastic billiards on general tables, Ann. Appl. Probab. 11 (2001), no. 2, 419 – 437. · Zbl 1015.60058 · doi:10.1214/aoap/1015345298
[10] Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. · Zbl 0689.28003
[11] Renato Feres, Random walks derived from billiards, Dynamics, ergodic theory, and geometry, Math. Sci. Res. Inst. Publ., vol. 54, Cambridge Univ. Press, Cambridge, 2007, pp. 179 – 222. · Zbl 1145.37009 · doi:10.1017/CBO9780511755187.008
[12] Renato Feres and Hong-Kun Zhang, The spectrum of the billiard Laplacian of a family of random billiards, J. Stat. Phys. 141 (2010), no. 6, 1039 – 1054. · Zbl 1205.82037 · doi:10.1007/s10955-010-0079-5
[13] Reinhard Klette, Karsten Schlüns, and Andreas Koschan, Computer vision, Springer-Verlag Singapore, Singapore, 1998. Three-dimensional data from images; Translated from the German; Revised by the authors. · Zbl 0917.68219
[14] Steven Lalley and Herbert Robbins, Stochastic search in a convex region, Probab. Theory Related Fields 77 (1988), no. 1, 99 – 116. · Zbl 0617.60086 · doi:10.1007/BF01848133
[15] Michel L. Lapidus and Robert G. Niemeyer, Towards the Koch snowflake fractal billiard: computer experiments and mathematical conjectures, Gems in experimental mathematics, Contemp. Math., vol. 517, Amer. Math. Soc., Providence, RI, 2010, pp. 231 – 263. · Zbl 1222.37028 · doi:10.1090/conm/517/10144
[16] M. Lapidus and R. Niemeyer, Families of Periodic Orbits of the Koch Snowflake Fractal Billiard. · Zbl 1364.28008
[17] Serge Tabachnikov, Geometry and billiards, Student Mathematical Library, vol. 30, American Mathematical Society, Providence, RI; Mathematics Advanced Study Semesters, University Park, PA, 2005. · Zbl 1119.37001
[18] Wikipedia, Retroreflector, http://en.wikipedia.org/wiki/Retroreflector Online; accessed 4-March-2012.
[19] Wikipedia, Scotchlite, http://en.wikipedia.org/wiki/Scotchlite Online; accessed 4-March-2012.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.