×

Integrability, modulational instability and mixed localized wave solutions for the generalized nonlinear Schrödinger equation. (English) Zbl 1491.35394

Summary: Under investigation in this paper is the generalized nonlinear Schrödinger (g-NLS) equation which has extensive applications in various physical fields. Firstly, we prove Liouville integrability of this equation by deriving its bi-Hamiltonian structures applying the variational identity. Nextly, we calculate the modulational instability for the possible reason of the formation of the rogue wave. Moreover, based on the generalized \((2, N-2)\)-fold Darboux transformation (DT), we can derive several mixed localized wave solutions such as breathers, rogue waves and semi-rational solitons for this equation, and accurately analyze a lot of important physical quantities. Finally, we present these solutions graphically by choosing appropriate parameters and discuss their dynamic behavior. It is worth noting that all of these solutions can change from a strong interaction to a weak interaction by choosing the parameters. This may also be one of the reasons why relevant wave structures presenting diversity, and useful to explain some physical phenomena in nonlinear optics.
Editorial remark. See the comment by E. Kengne on this paper [Z. Angew. Math. Phys. 75, No. 4, Paper No. 138, 8 p. (2024; Zbl 07900954)].

MSC:

35Q51 Soliton equations
35Q55 NLS equations (nonlinear Schrödinger equations)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems
35B35 Stability in context of PDEs
35C08 Soliton solutions
41A58 Series expansions (e.g., Taylor, Lidstone series, but not Fourier series)
78A60 Lasers, masers, optical bistability, nonlinear optics

Citations:

Zbl 07900954
Full Text: DOI

References:

[1] Mihalache, D., Multidimensional localized structures in optical and matter-wave media: a topical survey of recent literature, Rom. Rep. Phys., 69, 403 (2017)
[2] Tajiri, M.; Arai, T., Growing-and-decaying mode solution to the Davey-Stewartson equation, Phys. Rev. E, 60, 2297 (1999) · doi:10.1103/PhysRevE.60.2297
[3] Kedziora, David J.; Ankiewicz, A.; Akhmediev, N., Second-order nonlinear Schrödinger equation breather solutions in the degenerate and rogue wave limits, Phys. Rev. E, 65, 066601 (2012) · doi:10.1103/PhysRevE.85.066601
[4] Ma, YC, The perturbed plane-wave solutions of the cubic Schrödinger equation, Stud. Appl. Math., 60, 43-58 (1979) · Zbl 0412.35028 · doi:10.1002/sapm197960143
[5] He, JS; Zhang, HR; Wang, LH; Fokas, AS, Generating mechanism for higher-order rogue waves, Phys. Rev. E, 87, 052914 (2013) · doi:10.1103/PhysRevE.87.052914
[6] Bailung, H.; Nakamura, YJ, Observation of modulational instability in a multi-component plasma with negativeions, Plasma Phys., 50, 231 (1993) · doi:10.1017/S0022377800027033
[7] Ablowitz, MJ; Clarkson, PA, Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge: Cambridge University Press, Cambridge · Zbl 0762.35001 · doi:10.1017/CBO9780511623998
[8] Chen, JC; Ma, ZY; Hu, YH, Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation, J. Math. Anal. Appl., 460, 987-1003 (2018) · Zbl 1383.35009 · doi:10.1016/j.jmaa.2017.12.028
[9] Wang, HT; Wen, XY; Wang, DS, Modulational instability, interactions of localized wave structures and dynamics in the modified self-steepening nonlinear Schrödinger equation, Wave Motion, 91, 102396 (2019) · Zbl 1524.35605 · doi:10.1016/j.wavemoti.2019.102396
[10] Liu, YH; Guo, R.; Li, XL, Rogue wave solutions and modulation instability for the mixed nonlinear Schrödinger equation, Appl. Math. Lett., 121, 107450 (2021) · Zbl 1479.35808 · doi:10.1016/j.aml.2021.107450
[11] Cao, YL; Malomed; Boris, A.; He, JS, Two \((2+1)\)-dimensional integrable nonlocal nonlinear Schrödinger equations: Breather, rational and semi-rational solutions., Chaos Soliton Fractals, 114, 99-107 (2018) · Zbl 1415.35082 · doi:10.1016/j.chaos.2018.06.029
[12] Zhang, GQ; Yan, ZY; Wen, XY; Chen, Y., Interactions of localized wave structures and dynamics in the defocusing coupled nonlinear Schrödinger equations, Phys. Rev. E, 95, 042201 (2017) · doi:10.1103/PhysRevE.95.042201
[13] Wang, X.; Li, YQ; Chen, Y., Generalized Darboux transformation and localized wavesin coupled Hirota equations, Wave Motion, 51, 1149-1160 (2014) · Zbl 1456.35189 · doi:10.1016/j.wavemoti.2014.07.001
[14] Rao, JG; Fokas, AS; He, JS, Doubly Localized Two-Dimensional Rogue Waves in the Davey-Stewartson I Equation, J. Nonlinear Sci., 31, 4 (2021) · Zbl 1472.35089 · doi:10.1007/s00332-021-09720-6
[15] Gu, CH; Hu, HS; Zhou, ZX, Darboux Transformations in Integrable Systems: Theory and their Applications to Geometry (2005), New York: Springer-Verlag, New York · Zbl 1084.37054 · doi:10.1007/1-4020-3088-6
[16] Li, YS; Ma, WX; Zhang, JE, Darboux transformations of classical Boussinesq system and its multi-soliton solutions, Phys. Lett. A, 246, 253-258 (2001) · Zbl 0977.35114 · doi:10.1016/S0375-9601(01)00331-0
[17] Guo, BL; Ling, LM; Liu, QP, Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions, Phys. Rev. E, 85, 026607 (2012) · doi:10.1103/PhysRevE.85.026607
[18] Guo, BL; Ling, LM; Liu, QP, High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations, Stud. Appl. Math., 130, 317-34 (2013) · Zbl 1303.35098 · doi:10.1111/j.1467-9590.2012.00568.x
[19] Wen, XY; Yang, YQ; Yan, ZY, Generalized perturbation \((n, M)\)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation, Phys. Rev. E, 92, 012917 (2015) · doi:10.1103/PhysRevE.92.012917
[20] Kundu, A., Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations, J. Math. Phys., 25, 3433-3438 (1984) · doi:10.1063/1.526113
[21] Qiu, DQ; He, JS; Zhang, YS; Porsezian, K., The Darboux transformation of the Kundu-Eckhaus equation, Proc. R. Soc. A, 471, 2180 (2015) · Zbl 1371.35277 · doi:10.1098/rspa.2015.0236
[22] Liu, W., Geng, X.G., Xue B.: Some generalized coupled nonlinear Schrödinger equations and conservation laws. Mod. Phys. Lett. B, 1750299 (2017)
[23] Cao, R.; Zhang, J., Trial function method and exact solutions to the generalized nonlinear Schrdinger equation with time-dependent coefficient, Chin. Phys. B, 10, 100507 (2013) · Zbl 1249.93136 · doi:10.1088/1674-1056/22/10/100507
[24] Ma, WX; Zhang, Y., Component-trace identities for Hamiltonian structures, Appl. Anal., 89, 457-472 (2010) · Zbl 1192.37091 · doi:10.1080/00036810903277143
[25] Li, XY; Zhao, QL; Yang, QQ, Integrable asymmetric AKNS model with multi-component, Commun. Nonlinear Sci. Numer. Simul., 91, 105434 (2020) · Zbl 1448.35448 · doi:10.1016/j.cnsns.2020.105434
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.