×

The steady-state response of size-dependent functionally graded nanobeams to subharmonic excitation. (English) Zbl 1431.74072

Summary: This study aims to investigate the nonlinear forced vibration of functionally graded (FG) nanobeams. It is assumed that material properties are gradually graded in the direction of thickness. Nonlocal nonlinear Euler-Bernoulli beam theory is used to derive nonlocal governing equations of motion. The linear eigenmodes of FG nanobeams are used to transform a partial differential equation of motion into a system of ordinary differential equations via the Galerkin method. The multiple scale method is used to find the governing equations of the steady-state responses of FG nanobeams excited by a distributed harmonic force with constant intensity. It is also assumed that the working frequency is close to three times greater than the lowest natural frequency. Based on the equation governing the linear natural frequencies of FG nanobeams, the influence of the small scale parameter, material composition, and stiffness of the foundation on the linear relationship among natural frequencies is studied.
Results show that superharmonic response or a combination of resonances may occur as well as a subharmonic response depending on the power-law index and stiffness of the foundation. Then the governing equations of a steady-state response of FG nanobeams for four possible solutions are obtained depending on the value of the small scale parameter. It is shown that the simplest response of FG nanobeams is a subharmonic response or superharmonic response. The equations governing the frequency-response curves are obtained and the effects of the power-law index and small scale parameter on them are discussed.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Ke L-L, Yang J, Kitipornchai S, Bradford MA (2012) Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct 94:3250-3257 · doi:10.1016/j.compstruct.2012.04.037
[2] Kanani AS, Niknam H, Ohadi AR, Aghdam MM (2014) Effect of nonlinear elastic foundation on large amplitude free and forced vibration of functionally graded beam. Compos Struct 115:60-68 · doi:10.1016/j.compstruct.2014.04.003
[3] Simsek M, Yurtcu HH (2013) Analytical solutions for bending and buckling of functionally graded nano-beams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378-386 · doi:10.1016/j.compstruct.2012.10.038
[4] Lei J, He Y, Zhang B, Gan Z, Zeng P (2013) Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory. Int J Eng Sci 72:36-52 · Zbl 1423.74494 · doi:10.1016/j.ijengsci.2013.06.012
[5] Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48:1962-1990 · doi:10.1016/j.ijsolstr.2011.03.006
[6] Ansari R, Gholami R, Sahmani S (2011) Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory. Compos Struct 94:221-228 · Zbl 1293.74155 · doi:10.1016/j.compstruct.2011.06.024
[7] Ansari R, Gholami R, FaghihShojaei M, Mohammadi V, Sahmani S (2013) Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos Struct 100:385-397 · doi:10.1016/j.compstruct.2012.12.048
[8] Setoodeh AR, Afrahim S (2014) Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory. Compos Struct 116:128-135 · doi:10.1016/j.compstruct.2014.05.013
[9] Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59(9):2382-2399 · Zbl 1270.74114 · doi:10.1016/j.jmps.2011.06.008
[10] Arbind A, Reddy JN (2013) Nonlinear analysis of functionally graded microstructure-dependent beams. Compos Struct 98:272-281 · doi:10.1016/j.compstruct.2012.10.003
[11] Eltaher MA, Khairy A, Sadoun AM, Omar F-A (2014) Static and buckling analysis of functionally graded Timoshenko nanobeams. Appl Math Comput 229:283-295 · Zbl 1364.74014
[12] Eltaher MA, Emam SA, Mahmoud FF (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82-88 · doi:10.1016/j.compstruct.2012.09.030
[13] Eltaher MA, Emam SA, Mahmoud FF (2012) Free vibration analysis functionally graded size-dependent nano-beams. Appl Math Comput 218:7406-7420 · Zbl 1405.74019
[14] Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nano-beams. Compos Struct 99:193-201 · doi:10.1016/j.compstruct.2012.11.039
[15] Eltaher MA, Abdelrahman AA, Al-Nabawy A, Khater M, Mansour A (2014) Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl Math Comput 235:512-529 · Zbl 1334.74040
[16] Rahmani O, Pedram O (2014) Analysis and modeling the size effect on vibration of functionally graded nano-beams based on nonlocal Timoshenko beam theory. Int J Eng Sci 77:55-70 · Zbl 1423.74405 · doi:10.1016/j.ijengsci.2013.12.003
[17] Ebrahimi F, Salari E (2015) Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method. Composites B 79:156-169
[18] Uymaz B (2013) Forced vibration analysis of functionally graded beams using nonlocal elasticity. Compos Struct 105:227-239 · doi:10.1016/j.compstruct.2013.05.006
[19] Nazemnezhad R, Hosseini-Hashemi Sh (2014) Nonlocal nonlinear free vibration of functionally graded nano-beams. Compos Struct 110:192-199 · doi:10.1016/j.compstruct.2013.12.006
[20] Niknam H, Aghdam MM (2015) A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos Struct 119:452-462 · doi:10.1016/j.compstruct.2014.09.023
[21] Ziaee S (2015) Small scale effect on linear vibration of buckled size-dependent FG nanobeam. Ain Shams Eng J 6:587-598 · doi:10.1016/j.asej.2014.11.014
[22] Ebrahimi F, Salari E (2015) Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments. Compos Struct 128:363-380 · doi:10.1016/j.compstruct.2015.03.023
[23] Ebrahimi F, Salari E (2015) Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Composites B 78:272-290 · doi:10.1016/j.compositesb.2015.03.068
[24] Ebrahimi F, Salari E (2015) Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment. Acta Astron 113:29-50 · doi:10.1016/j.actaastro.2015.03.031
[25] Zhang YQ, Liu GR, Xie XY (2005) Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys Rev B 9:195404 · doi:10.1103/PhysRevB.71.195404
[26] Hu Y-G, Liew KM, Wang Q, He XQ, Yakobson BI (2008) Nonlocal shell model for elastic wave propagation in single- and doublewalled carbon nanotubes. J Mech Phys Solids 56:3475-3485 · Zbl 1171.74373 · doi:10.1016/j.jmps.2008.08.010
[27] Khademolhosseini F, Rajapakse RKND, Nojeh A (2010) Torsional buckling of carbon nanotubes based on nonlocal elasticity shell models. Compos Mater Sci 48:736-742 · doi:10.1016/j.commatsci.2010.03.021
[28] Ansari R, Sahmani S, Rouhi H (2011) Rayleigh-Ritz axial buckling analysis of single-walled carbon nanotubes with different boundary conditions. Phys Lett A 375:1255-1263 · doi:10.1016/j.physleta.2011.01.046
[29] Duan WH, Wang CM, Zhang YY (2007) Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J Appl Phys 101:024305 · doi:10.1063/1.2423140
[30] Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys Lett A 375:53-62 · doi:10.1016/j.physleta.2010.10.028
[31] Shen L, Shen H-S, Zhang C-L (2010) Anonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput Mater Sci 48:680-685 · doi:10.1016/j.commatsci.2010.03.006
[32] Ansari R, Sahmani S (2013) Prediction of biaxial buckling of single-layered graphene sheets based on nonlocal plate models and molecular dynamics simulations. Appl Math Model 37:7338-7351 · Zbl 1438.74063 · doi:10.1016/j.apm.2013.03.004
[33] Miandoab EM, Pishkenari HN, Yousefi-Koma A, Hoorzad H (2014) Polysiliconnano-beam model based on modified couple stress and Eringen’snonlocal elasticity theories. Physica E 63:223-228 · doi:10.1016/j.physe.2014.05.025
[34] Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41:305-312 · doi:10.1016/S0020-7225(02)00210-0
[35] Shen H-S, Xu Y-M, Zhang C-L (2013) Prediction of nonlinear vibration of bilayer graphene sheets in thermal environments via molecular dynamics simulations and nonlocal elasticity. Comput Method Appl Mech Eng 267:458-470 · Zbl 1286.74043 · doi:10.1016/j.cma.2013.10.002
[36] Yang J, Ke LL, Kitipornchai S (2010) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Phys E 42:1727-1735 · doi:10.1016/j.physe.2010.01.035
[37] Ke LL, Xiang Y, Yang J, Kitipornchai S (2009) Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput Mater Sci 47:409-417 · doi:10.1016/j.commatsci.2009.09.002
[38] Karaoglu P, Aydogdu M (2010) On the forced vibration of carbon nanotubes via a non-local Euler-Bernoulli beam model. J Mech Eng Sci 224(2):497-503 · doi:10.1243/09544062JMES1707
[39] Sudak LJ (2003) Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J Appl Phys 9:7281 · doi:10.1063/1.1625437
[40] Aydogdu M (2009) A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration. Physica E 41:1651-1655 · doi:10.1016/j.physe.2009.05.014
[41] Nayfeh AH, Emam SA (2008) Exact solution and stability of postbuckling configurations of beams. Nonlinear Dyn 54:395-408 · Zbl 1173.74019 · doi:10.1007/s11071-008-9338-2
[42] Nayfeh AH, Mook DT (1995) Nonlinear oscillations. Wiley, New York · Zbl 0418.70001 · doi:10.1002/9783527617586
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.