×

Eigenanalyses of functionally graded micro-scale beams entrapped in an axially-directed magnetic field with elastic restraints. (English) Zbl 1359.74232

Summary: Approximate numerical solutions are obtained for the vibration response of a functionally graded (FG) micro-scale beam entrapped within an axially-directed magnetic field using the differential transformation method (DTM). Idealized as a one-dimensional (1D) continuum with a noticeable microstructural effect and a thickness-directed material gradient, the microbeam’s behavior is studied under a range of nonclassical boundary conditions. The immanent microstructural effect of the micro-scale beam is accounted for through the modified couple stress theory (MCST), while the microscopic inhomogeneity is smoothened with the classical rule of mixture. The study demonstrates the robustness and flexibility of the DTM in providing benchmark results pertaining to the free vibration behavior of the FG microbeams under the following boundary conditions: (a) Clamped-tip mass; (b) clamped-elastic support (transverse spring); (c) pinned-elastic support (transverse spring); (d) clamped-tip mass-elastic support (transverse spring); (e) clamped-elastically supported (rotational and transverse springs); and (f) fully elastically restrained (transverse and rotational springs on both boundaries). The analyses revealed the possibility of using functional gradation to adjust the shrinking of the resonant frequency to zero (rigid-body motion) as the mass ratio tends to infinity. The magnetic field is noted to have a negligibly minimal influence when the gradient index is lower, but a notably dominant effect when it is higher.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] 1. R. Kawamura, Y. Tanigawa, S. Kusuki and H. Hamamura, Fundamental thermo-elasticity equations for thermally induced flexural vibration problems for inhomogeneous plates and thermo-elastic dynamical responses to a sinusoidally varying surface temperature, J. Eng. Math.61 (2008) 143-160. genRefLink(16, ’S0219455415500224BIB001’, ’10.1007 · Zbl 1148.74028
[2] 2. F. Watari, A. Yokoyama, F. Saso, M. Uo and T. Kawasaki, Fabrication and properties of functionally graded dental implant, Composit. Part B: Eng.28 (1997) 5-11. genRefLink(16, ’S0219455415500224BIB002’, ’10.1016
[3] 3. K. Suganuma, T. Okamoto, M. Shimada and M. Koizumi, New Method for solid-state Bonding Between Ceramics and Metals, J. Am. Ceramic Soc.66 (1983) c117-c118. genRefLink(16, ’S0219455415500224BIB003’, ’10.1111
[4] 4. J. Aboudi, S. M. Arnold and M.-J. Pindera, Response of functionally graded composites to thermal gradients, Composit. Eng.4 (1994) 1-18. genRefLink(16, ’S0219455415500224BIB004’, ’10.1016
[5] 5. M. Koizumi, FGM activities in Japan, Composit. Part B: Eng.28 (1997) 1-4. genRefLink(16, ’S0219455415500224BIB005’, ’10.1016
[6] 6. J. J. Sobczak and L. Drenchev, Metallic functionally graded materials: A specific class of advanced composites, J. Mater. Sci. Technol.29 (2013) 297-316. genRefLink(16, ’S0219455415500224BIB006’, ’10.1016
[7] 7. K. M. Liew, S. Kitipornchai, X. Z. Zhang and C. W. Lim, Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders, Int. J. Solids Struct.40 (2003) 2355-2380. genRefLink(16, ’S0219455415500224BIB007’, ’10.1016 · Zbl 1087.74529
[8] 8. A. Chakraborty, S. Gopalakrishnan and J. N. Reddy, A new beam finite element for the analysis of functionally graded materials, Int, J. Mech. Sci.45 (2003) 519-539. genRefLink(16, ’S0219455415500224BIB008’, ’10.1016
[9] 9. S. G. Lekhnitskii, Theory of the Elasticity of Anisotropic Bodies (Mir, Russia, 1977).
[10] 10. F. Erdogan, Fracture mechanics of functionally graded materials, Composit. Eng.5 (1995) 753-770. genRefLink(16, ’S0219455415500224BIB010’, ’10.1016
[11] 11. K. S. Ravichandran, Thermal residual stresses in a functionally graded material system, Mater. Sci. Eng.: A201 (1995) 269-276. genRefLink(16, ’S0219455415500224BIB011’, ’10.1016
[12] 12. M. Omori, T. Kakita, A. Okubo and T. Hirai, Pure WC/Mo functionally graded materials, Mater. Sci. Forum308-311 (1999) 53-58. genRefLink(16, ’S0219455415500224BIB012’, ’10.4028
[13] 13. J. N. Reddy and C. D. Chin, Thermomechanical analysis of functionally graded cylinders and plates, J. Thermal Stress.21 (1998) 593-626. genRefLink(16, ’S0219455415500224BIB013’, ’10.1080
[14] 14. H.-S. Shen, Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments, Composit. Sci. Technol.62 (2002) 977-987. genRefLink(16, ’S0219455415500224BIB014’, ’10.1016
[15] 15. Z. H. Jin and R. C. Batra, Some basic fracture mechanics concepts in functionally graded materials, J. Mech. Phys. Solids44 (1996) 1221-1235. genRefLink(16, ’S0219455415500224BIB015’, ’10.1016
[16] 16. A. M. Subra Suresh, Fundamentals of Functionally Graded Materials: Processing and Thermomechanical Behaviour of Graded Metals and Metal-Ceramic composites (IOM Communications Ltd, London, 1998).
[17] 17. M. A. Benatta, I. Mechab, A. Tounsi and E. A. Adda Bedia, Static analysis of functionally graded short beams including warping and shear deformation effects, Comput. Mater. Sci.44 (2008) 765-773. genRefLink(16, ’S0219455415500224BIB017’, ’10.1016
[18] 18. M. Şimşek, Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method, Int. J. Eng. Appl. Sci.1 (2009) 1-11. genRefLink(128, ’S0219455415500224BIB018’, ’000279281300001’);
[19] 19. T. P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam and J. Lee, Static behaviour of functionally graded sandwich beams using a quasi-3D theory, Composit. Part B: Eng.68 (2015) 59-74. genRefLink(16, ’S0219455415500224BIB019’, ’10.1016
[20] 20. K. M. Liew, J. Yang and Y. F. Wu, Nonlinear vibration of a coating-FGM-substrate cylindrical panel subjected to a temperature gradient, Comput. Meth. Appl. Mech. Eng.195 (2006) 1007-1026. genRefLink(16, ’S0219455415500224BIB020’, ’10.1016 · Zbl 1292.74017
[21] 21. A. M. Zenkour, Steady-state thermoelastic analysis of a functionally graded rotating annular disk, Int.J. Struct. Stab. Dynam.06 (2006) 559-574. [Abstract] genRefLink(128, ’S0219455415500224BIB021’, ’000243318000008’);
[22] 22. E. Babilio, Dynamics of Functionally Graded Beams on Viscoelastic Foundation, Int. J. Struct. Stab. Dynam.14 (2014) 1440014. [Abstract] genRefLink(128, ’S0219455415500224BIB022’, ’000345583800003’); · Zbl 1359.74191
[23] 23. S. Rinaldi, S. Prabhakar, S. Vengallatore and M. P. Païdoussis, Dynamics of microscale pipes containing internal fluid flow: Damping, frequency shift, and stability, J. Sound Vibr.329 (2010) 1081-1088. genRefLink(16, ’S0219455415500224BIB023’, ’10.1016
[24] 24. Y. Fu, H. Du and S. Zhang, Functionally graded TiN/TiNi shape memory alloy films, Mater. Lett.57 (2003) 2995-2999. genRefLink(16, ’S0219455415500224BIB024’, ’10.1016
[25] 25. C. F. Lü, C. W. Lim and W. Q. Chen, Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory, Int. J. Solids Struct.46 (2009) 1176-1185. genRefLink(16, ’S0219455415500224BIB025’, ’10.1016 · Zbl 1236.74189
[26] 26. A. Witvrouw and A. Mehta, ” The use of functionally graded poly-SiGe layers for MEMS applications,” Mater. Sci. Forum492-493 (2005) 255-260. genRefLink(16, ’S0219455415500224BIB026’, ’10.4028
[27] 27. J. N. Reddy, Microstructure-dependent couple stress theories of functionally graded beams, J. Mech. Phys. Solids59 (2011) 2382-2399. genRefLink(16, ’S0219455415500224BIB027’, ’10.1016
[28] 28. J. V. A. Dos Santos and J. N. Reddy, Free vibration and buckling analysis of beams with a modified couple-stress theory, Int. J. Appl. Mech.04 (2012) 1250026. [Abstract]
[29] 29. Y. T. Beni and M. K. Zeverdejani, Free vibration of microtubules as elastic shell model based on modified couple stress theory, J. Mech. Medi. Biol.0 1550037. · Zbl 1378.92008
[30] 30. P. Steinmann and G. A. Maugin, Mechanics of Material Forces, 1st edn. Available: [http://SWIN.eblib.com.au/patron/FullRecord.aspx?p=302874] . · Zbl 1087.74006
[31] 31. S. Wulfinghoff, E. Bayerschen and T. Böhlke, Micromechanical simulation of the Hall-Petch effect with a crystal gradient theory including a grain boundary yield criterion, PAMM13 (2013) 15-18. genRefLink(16, ’S0219455415500224BIB031’, ’10.1002
[32] 32. K. B. Mustapha, Modeling of a functionally graded micro-ring segment for the analysis of coupled extensional-flexural waves, Composit. Struct.117 (2014) 274-287. genRefLink(16, ’S0219455415500224BIB032’, ’10.1016
[33] 33. K. Mustapha, Size-dependent flexural dynamics of ribs-connected polymeric micropanels, CMC: Comput. Mater. Continua42 (2014) 141-174.
[34] 34. K. Mustapha and Z. Zhong, Wave propagation characteristics of a twisted micro scale beam, Int. J. Eng. Sci.53 (2012) 46-57. genRefLink(16, ’S0219455415500224BIB034’, ’10.1016 · Zbl 1423.74699
[35] 35. A. C. Eringen, Microcontinuum Field Theories: II. Fluent Media Vol. 2 (Springer, New York, 2001). · Zbl 0972.76001
[36] 36. I. Vardoulakis and J. Sulem, Bifurcation Analysis in Geomechanics (Blackie Academic & Professional, London, New York, 1995).
[37] 37. A. Eringen, Microcontinuum Field Theories (1999).
[38] 38. R. D. Mindlin, Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct.1 (1965) 417-438. genRefLink(16, ’S0219455415500224BIB038’, ’10.1016
[39] 39. A. C. Eringen and E. S. Suhubi, Nonlinear theory of simple micro-elastic solid – I, Int. J. Eng. Sci.2 (1964) 189-203. genRefLink(16, ’S0219455415500224BIB039’, ’10.1016 · Zbl 0138.21202
[40] 40. A. C. Eringen, ” Nonlocal Elasticity and Waves,” Continuum Mechanics Aspects of Geodynamics and Rock Fracture Mechanics, Vol. 12 Thoft-Christensen (Springer, Netherlands, 1974), pp. 81-105. genRefLink(16, ’S0219455415500224BIB040’, ’10.1007
[41] 41. C. M. Wang, Y. Y. Zhang and S. Kitipornchai, Vibration of initially stressed micro- and nano-beams, Int. J. Struct. Stab. Dynam.07 (2007) 555-570. [Abstract] genRefLink(128, ’S0219455415500224BIB041’, ’000253298500001’); · Zbl 1205.74019
[42] 42. T. M. Atanackovic, B. N. Novakovic, Z. Vrcelj and D. Zorica, Rotating nanorod with clamped ends, Int. J. Struct. Stabil. Dynam.15 (2015) 1450050. [Abstract] genRefLink(128, ’S0219455415500224BIB042’, ’000351014400003’); · Zbl 1359.74190
[43] 43. K. B. Mustapha and Z. W. Zhong, Free transverse vibration of an axially loaded non-prismatic single-walled carbon nanotube embedded in a two-parameter elastic medium, Comput. Mater. Sci.50 (2010) 742-751. genRefLink(16, ’S0219455415500224BIB043’, ’10.1016
[44] 44. R. D. Mindlin and H. F. Tiersten, Effects of couple-stresses in linear elasticity, Arch. Rational Mech. Anal.11 (1962) 415-448. genRefLink(16, ’S0219455415500224BIB044’, ’10.1007
[45] 45. F. Yang, A. C. M. Chong, D. C. C. Lam and P. Tong, Couple stress-based strain gradient theory for elasticity, Int. J. Solids Struct.39 (2002) 2731-2743. genRefLink(16, ’S0219455415500224BIB045’, ’10.1016 · Zbl 1037.74006
[46] 46. K. B. Mustapha and Z. W. Zhong, Spectral element analysis of a non-classical model of a spinning micro beam embedded in an elastic medium, Mech. Mach. Theor.53 (2012) 66-85. genRefLink(16, ’S0219455415500224BIB046’, ’10.1016
[47] 47. G. Exadaktylos, I. Vardoulakis and E. Aifantis, Cracks in gradient elastic bodies with surface energy, Int. J. Fract.79 (1996) 107-119. genRefLink(16, ’S0219455415500224BIB047’, ’10.1007
[48] 48. B. Akgöz and Ö. Civalek, Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM), Composit. Part B: Eng.55 (2013) 263-268. genRefLink(16, ’S0219455415500224BIB048’, ’10.1016 · Zbl 1398.74117
[49] 49. H. Zeighampour and Y. Tadi Beni, Analysis of conical shells in the framework of coupled stresses theory, Int. J. Eng. Sci.81 (2014) 107-122. genRefLink(16, ’S0219455415500224BIB049’, ’10.1016
[50] 50. B. Akgöz and Ö. Civalek, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory, Meccanica48 (2013) 863-873. genRefLink(16, ’S0219455415500224BIB050’, ’10.1007
[51] 51. A. M. Dehrouyeh-Semnani and M. Nikkhah-Bahrami, A discussion on incorporating the Poisson effect in microbeam models based on modified couple stress theory, Int. J. Eng. Sci.86 (2015) 20-25. genRefLink(16, ’S0219455415500224BIB051’, ’10.1016
[52] 52. A. M. Dehrouyeh-Semnani, A discussion on different non-classical constitutive models of microbeam, Int. J. Eng. Sci.85 (2014) 66-73. genRefLink(16, ’S0219455415500224BIB052’, ’10.1016
[53] 53. M. Asghari, M. Rahaeifard, M. H. Kahrobaiyan and M. T. Ahmadian, The modified couple stress functionally graded Timoshenko beam formulation, Mater. Design32 (2011) 1435-1443. genRefLink(16, ’S0219455415500224BIB053’, ’10.1016
[54] 54. M. Şimşek and J. N. Reddy, Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, Int. J. Eng. Sci.64 (2013) 37-53. genRefLink(16, ’S0219455415500224BIB054’, ’10.1016 · Zbl 1423.74517
[55] 55. B. Akgöz and Ö. Civalek, Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Composit. Struct.98 (2013) 314-322. genRefLink(16, ’S0219455415500224BIB055’, ’10.1016 · Zbl 1398.74117
[56] 56. J. Lei, Y. He, B. Zhang, Z. Gan and P. Zeng, Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory, Int. J. Eng. Sci.72 (2013) 36-52. genRefLink(16, ’S0219455415500224BIB056’, ’10.1016 · Zbl 1423.74494
[57] 57. S. Sahmani, R. Ansari, R. Gholami and A. Darvizeh, Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory, Composit. Part B: Eng.51 (2013) 44-53. genRefLink(16, ’S0219455415500224BIB057’, ’10.1016 · Zbl 1359.74090
[58] 58. M. Şimşek, T. Kocatürk and Ş. D. Akbaş, Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory, Composit. Struct.95 (2013) 740-747. genRefLink(16, ’S0219455415500224BIB058’, ’10.1016
[59] 59. R. Ansari, R. Gholami and S. Sahmani, Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Composit. Struct.94 (2011) 221-228. genRefLink(16, ’S0219455415500224BIB059’, ’10.1016 · Zbl 1293.74155
[60] 60. B. Zhang, Y. He, D. Liu, Z. Gan and L. Shen, Size-dependent functionally graded beam model based on an improved third-order shear deformation theory, Eur. J. Mech. – A/Solids47 (2014) 211-230. genRefLink(16, ’S0219455415500224BIB060’, ’10.1016 · Zbl 1406.74416
[61] 61. B. Akgöz and Ö. Civalek, Shear deformation beam models for functionally graded microbeams with new shear correction factors, Composit. Struct.112 (2014) 214-225. genRefLink(16, ’S0219455415500224BIB061’, ’10.1016
[62] 62. E. M. Miandoab, H. N. Pishkenari and A. Yousefi-Koma, Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory, Int. J. Struct. Stab. Dynam.0 1450059. · Zbl 1359.74229
[63] 63. R. Ansari, M. F. Shojaei, V. Mohammadi, R. Gholami and H. Rouhi, Nonlinear Vibration Analysis of Microscale Functionally Graded Timoshenko Beams using the Most General form of Strain Gradient Elasticity, J. Mech.30 (2014) 161-172. genRefLink(16, ’S0219455415500224BIB063’, ’10.1017
[64] 64. R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi and S. Sahmani, Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Composit. Struct.100 (2013) 385-397. genRefLink(16, ’S0219455415500224BIB064’, ’10.1016 · Zbl 1406.74526
[65] 65. Y. H. Chai and C. M. Wang, An application of differential transformation to stability analysis of heavy columns, Int. J. Struct. Stab. Dynam.06 (2006) 317-332. [Abstract] genRefLink(128, ’S0219455415500224BIB065’, ’000240115300002’);
[66] 66. T. T. Nguyen, N. S. Goo, V. K. Nguyen, Y. Yoo and S. Park, Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm, Sensors Actuators A: Phys.141 (2008) 640-648. genRefLink(16, ’S0219455415500224BIB066’, ’10.1016
[67] 67. F. Amirouche, Y. Zhou and T. Johnson, Current micropump technologies and their biomedical applications, Microsyst. Technol.15 (2009) 647-666. genRefLink(16, ’S0219455415500224BIB067’, ’10.1007
[68] 68. L.-L. Ke and Y.-S. Wang, Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Composit. Struct.93 (2011) 342-350. genRefLink(16, ’S0219455415500224BIB068’, ’10.1016
[69] 69. A. Nateghi, M. Salamat-talab, J. Rezapour and B. Daneshian, Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory, Appl. Math. Modell.36 (2012) 4971-4987. genRefLink(16, ’S0219455415500224BIB069’, ’10.1016 · Zbl 1252.74020
[70] 70. R. Gholami, R. Ansari, A. Darvizeh and S. Sahmani, Axial buckling and dynamic stability of functionally graded microshells based on the modified couple stress theory, Int. J. Struct. Stab. Dynam.0 1450070. · Zbl 1359.74090
[71] 71. W. Wunderlich and W. D. Pilkey, Mechanics of Structures: Variational and Computational Methods, 2nd edn. (CRC Press, Boca Raton, FL, 2003). · Zbl 1030.74001
[72] 72. J. N. Reddy, Analysis of functionally graded plates, Int. J. Numer. Meth. Eng.47 (2000) 663-684. genRefLink(16, ’S0219455415500224BIB072’, ’10.1002 · Zbl 0970.74041
[73] 73. J. N. Reddy, Energy Principles and Variational Methods in Applied Mechanics, 2nd edn. (Wiley, Hoboken, N. J., 2002).
[74] 74. R. Szilard, Theories and Applications of Plate Analysis: Classical, Numerical, and Engineering Methods (John Wiley, Hoboken, N. J., 2004). genRefLink(16, ’S0219455415500224BIB074’, ’10.1002
[75] 75. K. Kiani, Longitudinally varying magnetic field influenced transverse vibration of embedded double-walled carbon nanotubes, Int. J. Mech. Sci.87 (2014) 179-199. genRefLink(16, ’S0219455415500224BIB075’, ’10.1016
[76] 76. H. Su, J. R. Banerjee and C. W. Cheung, Dynamic stiffness formulation and free vibration analysis of functionally graded beams, Composit. Struct.106 (2013) 854-862. genRefLink(16, ’S0219455415500224BIB076’, ’10.1016
[77] 77. S. Rajasekaran, Differential transformation and differential quadrature methods for centrifugally stiffened axially functionally graded tapered beams, Int. J. Mech. Sci.74 (2013) 15-31. genRefLink(16, ’S0219455415500224BIB077’, ’10.1016 · Zbl 1307.74042
[78] 78. J. K. Zhou, Differential Transformation and Its Applications for Electrical Circuits (Huazhong University Press, Wuhan China, 1986) (in Chinese).
[79] 79. C.-K. Chen and S.-H. Ho, Application of differential transformation to eigenvalue problems, Appl. Math. Comput.79 (1996) 173-188. genRefLink(16, ’S0219455415500224BIB079’, ’10.1016
[80] 80. K. Pradhan and S. Chakraverty, Free vibration of Euler and Timoshenko functionally graded beams by Rayleigh Ritz method, Composit. Part B, Eng.51 (2013) 175-184. genRefLink(16, ’S0219455415500224BIB080’, ’10.1016
[81] 81. M. Şimşek, Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories, Nuclear Eng. Design240 (2010) 697-705. genRefLink(16, ’S0219455415500224BIB081’, ’10.1016
[82] 82. H. Su, J. R. Banerjee and C. W. Cheung, Dynamic stiffness formulation and free vibration analysis of functionally graded beams, Composit. Struct.106 (2013) 854-862. genRefLink(16, ’S0219455415500224BIB082’, ’10.1016
[83] 83. M. Şimşek and J. Reddy, A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory, Composit. Struct.101 (2013) 47-58. genRefLink(16, ’S0219455415500224BIB083’, ’10.1016
[84] 84. M. Asghari, M. T. Ahmadian, M. H. Kahrobaiyan and M. Rahaeifard, On the size-dependent behavior of functionally graded micro-beams, Mater. Design31 (2010) 2324-2329. genRefLink(16, ’S0219455415500224BIB084’, ’10.1016
[85] 85. P. A. A. Laura, J. L. Pombo and E. A. Susemihl, A note on the vibrations of a clamped-free beam with a mass at the free end, J. Sound Vibr.37 (1974) 161-168. genRefLink(16, ’S0219455415500224BIB085’, ’10.1016
[86] 86. R. Ansari, R. Gholami and S. Sahmani, Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory, Arch. Appl. Mech.83 (2013) 1439-1449. genRefLink(16, ’S0219455415500224BIB086’, ’10.1007
[87] 87. P. A. A. Laura, R. O. Grossi and S. Alvarez, Transverse vibrations of a beam elastically restrained at one end and with a mass and spring at the other subjected to an axial force, Nuclear Eng. Design74 (1983) 299-302. genRefLink(16, ’S0219455415500224BIB087’, ’10.1016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.