×

Size-dependent functionally graded beam model based on an improved third-order shear deformation theory. (English) Zbl 1406.74416

Summary: In this study, a size-dependent beam model made of functionally graded materials (FGMs) is developed. This model contains both microscale and shear deformation effects. The microscale effect is captured using the strain gradient elasticity theory, while the shear deformation effect is included using an improved third-order shear deformation theory which is based on a more rigorous kinematics of displacements. In addition, interaction between the Winkler-Pasternak elastic foundation and the FG microbeam is considered. The material properties of the FG microbeams are assumed to vary in the thickness direction and estimated through the Mori-Tanaka homogenization technique. Material length scale parameters are viewed as the function of material mixture ratio rather than a constant. The equations of motion and boundary conditions are derived from Hamilton’s principle. Analytical solutions are obtained using the Navier method for bending, free vibration, and buckling problems of FG microbeams with simply supported boundary conditions. The effects of material length scale parameter, aspect ratio, various material compositions, elastic foundation parameters and shear deformation on mechanical responses of the FG microbeam are investigated in detail. Some of the present results are validated by comparing the present results to those available in literature. The results indicate that the microscale effect, elastic foundation and material compositions greatly affect the mechanical behavior of FG microbeams. The new results can be used as benchmark solutions for future researches.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
Full Text: DOI

References:

[1] Akgöz, B.; Civalek, Ö., Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory, Arch. Appl. Mech., 82, 423-443, (2011) · Zbl 1293.74252
[2] Akgöz, B.; Civalek, Ö., Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams, Int. J. Eng. Sci., 49, 1268-1280, (2011) · Zbl 1423.74338
[3] Akgöz, B.; Civalek, Ö., Free vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory, Compos. Struct., 98, 314-322, (2013)
[4] Akgöz, B.; Civalek, Ö., Buckling analysis of functionally graded microbeams based on the strain gradient theory, Acta Mech., 1-17, (2013) · Zbl 1398.74117
[5] Akgöz, B.; Civalek, Ö., A size-dependent shear deformation beam model based on the strain gradient elasticity theory, Int. J. Eng. Sci., 70, 1-14, (2013) · Zbl 1423.74452
[6] Ansari, R.; Faghih Shojaei, M.; Gholami, R.; Mohammadi, V.; Darabi, M., Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams, Int. J. Non-Linear Mech., 50, 127-135, (2013)
[7] Ansari, R.; Gholami, R.; Sahmani, S., Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory, Compos. Struct., 94, 221-228, (2011)
[8] Ansari, R.; Gholami, R.; Sahmani, S., Study of small scale effects on the nonlinear vibration response of functionally graded Timoshenko microbeams based on the strain gradient theory, J. Comput. Nonlinear Dyn.-ASME, 7, 1-9, (2012)
[9] Anthoine, A., Effect of couple-stresses on the elastic bending of beams, Int. J. Solids Struct., 37, 1003-1018, (2000) · Zbl 0978.74044
[10] Asghari, M.; Kahrobaiyan, M. H.; Ahmadian, M. T., A nonlinear Timoshenko beam formulation based on the modified couple stress theory, Int. J. Eng. Sci., 48, 1749-1761, (2010) · Zbl 1231.74258
[11] Asghari, M.; Ahmadian, M.; Kahrobaiyan, M.; Rahaeifard, M., On the size-dependent behavior of functionally graded micro-beams, Mater. Des., 31, 2324-2329, (2010)
[12] Asghari, M.; Rahaeifard, M.; Kahrobaiyan, M.; Ahmadian, M., The modified couple stress functionally graded Timoshenko beam formulation, Mater. Des., 32, 1435-1443, (2011) · Zbl 1271.74257
[13] Ashoori Movassagh, A.; Mahmoodi, M. J., A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory, Eur. J. Mech. - A/Solids, 40, 50-59, (2013) · Zbl 1406.74067
[14] Aydogdu, M., A new shear deformation theory for laminated composite plates, Compos. Struct., 89, 94-101, (2009)
[15] Chen, W. J.; Li, X. P., Size-dependent free vibration analysis of composite laminated Timoshenko beam based on new modified couple stress theory, Arch. Appl. Mech., 1-14, (2012)
[16] Chong, A.; Yang, F.; Lam, D.; Tong, P., Torsion and bending of micron-scaled structures, J. Mater. Res., 16, 1052-1058, (2001)
[17] Fleck, N.; Muller, G.; Ashby, M.; Hutchinson, J., Strain gradient plasticity: theory and experiment, Acta Metall. Mater., 42, 2, 475-487, (1994)
[18] Ghayesh, M. H.; Farokhi, H.; Amabili, M., Nonlinear dynamics of a microscale beam based on the modified couple stress theory, Compos. Part B: Eng., 50, 318-324, (2013)
[19] Kahrobaiyan, M.; Asghari, M.; Rahaeifard, M.; Ahmadian, M., A nonlinear strain gradient beam formulation, Int. J. Eng. Sci., 49, 1256-1267, (2011) · Zbl 1423.74487
[20] Kahrobaiyan, M.; Rahaeifard, M.; Tajalli, S.; Ahmadian, M., A strain gradient functionally graded Euler-Bernoulli beam formulation, Int. J. Eng. Sci., 52, 65-76, (2012) · Zbl 1423.74488
[21] Kang, X.; Xi, Z., Size effect on the dynamic characteristic of a micro beam based on Cosserat theory, J. Mech. Strength, 29, 1-4, (2007)
[22] Karama, M.; Afaq, K.; Mistou, S., Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity, Int. J. Solids Struct., 40, 1525-1546, (2003) · Zbl 1087.74579
[23] Ke, L.-L.; Wang, Y.-S.; Yang, J.; Kitipornchai, S., Nonlinear free vibration of size-dependent functionally graded microbeams, Int. J. Eng. Sci., 50, 256-267, (2012) · Zbl 1423.74395
[24] Ke, L.-L.; Yang, J.; Kitipornchai, S.; Bradford, M. A., Bending, buckling and vibration of size-dependent functionally graded annular microplates, Compos. Struct., 94, 3250-3257, (2012)
[25] Ke, L. L.; Wang, Y. S., Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Compos. Struct., 93, 342-350, (2011)
[26] Koiter, W., Couple stresses in the theory of elasticity, I and II, Nederl. Akad. Wetensch. Proc. Ser. B, 17-29, (1964) · Zbl 0119.39504
[27] Koizumi, M., The concept of FGM, Ceram. Trans. Funct. Gradient Mater., 34, 1, 3-10, (1993)
[28] Koizumi, M., FGM activities in Japan, Compos. Part B: Eng., 28, 1-4, (1997)
[29] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., The size-dependent natural frequency of Bernoulli-Euler micro-beams, Int. J. Eng. Sci., 46, 427-437, (2008) · Zbl 1213.74189
[30] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., Static and dynamic analysis of micro beams based on strain gradient elasticity theory, Int. J. Eng. Sci., 47, 487-498, (2009) · Zbl 1213.74190
[31] Lü, C.; Lim, C.; Chen, W., Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory, Int. J. Solids Struct., 46, 1176-1185, (2009) · Zbl 1236.74189
[32] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477-1508, (2003) · Zbl 1077.74517
[33] Lei, J.; He, Y.; Zhang, B.; Gan, Z.; Zeng, P., Bending and vibration of functionally graded sinusoidal microbeams based on the strain gradient elasticity theory, Int. J. Eng. Sci., 72, 36-52, (2013) · Zbl 1423.74494
[34] Liu, D.; He, Y.; Dunstan, D.; Zhang, B.; Gan, Z.; Hu, P.; Ding, H., Anomalous plasticity in the cyclic torsion of micron scale metallic wires, Phys. Rev. Lett., 110, 244301, (2013)
[35] Liu, D.; He, Y.; Tang, X.; Ding, H.; Hu, P.; Cao, P., Size effects in the torsion of microscale copper wires: experiment and analysis, Scr. Mater., 66, 6, 406-409, (2012)
[36] Ma, H.; Gao, X.; Reddy, J., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solids, 56, 3379-3391, (2008) · Zbl 1171.74367
[37] Ma, H.; Gao, X. L.; Reddy, J., A nonclassical reddy-Levinson beam model based on a modified couple stress theory, Int. J. Multiscale Comput. Eng., 8, (2010)
[38] Mindlin, R.; Tiersten, H., Effects of couple-stresses in linear elasticity, Arch. Ration. Mech. Anal., 11, 415-448, (1962) · Zbl 0112.38906
[39] Mindlin, R. D., Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., 1, 417-438, (1965)
[40] Nateghi, A.; Salamat-talab, M., Thermal effect on size dependent behavior of functionally graded micro beams based on modified couple stress theory, Compos. Struct., 96, 97-110, (2013)
[41] Nateghi, A.; Salamat-talab, M.; Rezapour, J.; Daneshian, B., Size dependent buckling analysis of functionally graded micro beams based on modified couple stress theory, Appl. Math. Model., 36, 10, 4971-4987, (2012) · Zbl 1252.74020
[42] Park, S. K.; Gao, X. L., Bernoulli-Euler beam model based on a modified couple stress theory, J. Micromech. Microeng., 16, 2355-2359, (2006)
[43] Rahaeifard, M.; Kahrobaiyan, M.; Ahmadian, M., Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials, (2009), ASME
[44] Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud’Homme, R. K.; Brinson, L. C., Functionalized graphene sheets for polymer nanocomposites, Nat. Nanotechnol., 3, 327-331, (2008)
[45] Ramezani, S., A micro scale geometrically non-linear Timoshenko beam model based on strain gradient elasticity theory, Int. J. Non-Linear Mech., 47, 8, 863-873, (2012)
[46] Reddy, J., Microstructure-dependent couple stress theories of functionally graded beams, J. Mech. Phys. Solids, 59, 2382-2399, (2011) · Zbl 1270.74114
[47] Reddy, J. N., A simple higher-order theory for laminated composite plates, J. Appl. Mech., 51, 745-752, (1984) · Zbl 0549.73062
[48] Roque, C. M.C.; Fidalgo, D. S.; Ferreira, A. J.M.; Reddy, J. N., A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Compos. Struct., 96, 532-537, (2013)
[49] Sahmani, S.; Ansari, R., On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory, Compos. Struct., 95, 430-442, (2013)
[50] Salamat-Talab, M.; Nateghi, A.; Torabi, J., Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory, Int. J. Mech. Sci., 57, 63-73, (2012)
[51] Shi, G., A new simple third-order shear deformation theory of plates, Int. J. Solids Struct., 44, 4399-4417, (2007) · Zbl 1356.74123
[52] Shu, J.; Fleck, N., The prediction of a size effect in microindentation, Int. J. Solids Struct., 35, 1363-1383, (1998) · Zbl 0923.73056
[53] Şimşek, M.; Kocatürk, T.; Akbaş, Ş. D., Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory, Compos. Struct., 95, 740-747, (2013)
[54] Şimşek, M.; Reddy, J., Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory, Int. J. Eng. Sci., 64, 37-53, (2013) · Zbl 1423.74517
[55] Şimşek, M.; Reddy, J., A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory, Compos. Struct., 101, 47-58, (2013)
[56] Soldatos, K., A transverse shear deformation theory for homogeneous monoclinic plates, Acta Mech., 94, 195-220, (1992) · Zbl 0850.73130
[57] Stölken, J.; Evans, A., A microbend test method for measuring the plasticity length scale, Acta Mater., 46, 5109-5115, (1998)
[58] Tajalli, S. A.; Rahaeifard, M.; Kahrobaiyan, M. H.; Movahhedy, M. R.; Akbari, J.; Ahmadian, M. T., Mechanical behavior analysis of size-dependent micro-scaled functionally graded Timoshenko beams by strain gradient elasticity theory, Compos. Struct., 102, 72-80, (2013)
[59] Toupin, R., Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., 11, 385-414, (1962) · Zbl 0112.16805
[60] Touratier, M., An efficient standard plate theory, Int. J. Eng. Sci., 29, 901-916, (1991) · Zbl 0825.73299
[61] Wang, B.; Zhao, J.; Zhou, S., A micro scale Timoshenko beam model based on strain gradient elasticity theory, Eur. J. Mech. - A/Solids, 29, 591-599, (2010) · Zbl 1480.74194
[62] Wang, B.; Zhou, S.; Zhao, J.; Chen, X., A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory, Eur. J. Mech.-A/Solids, 30, 517-524, (2011) · Zbl 1278.74103
[63] Wattanasakulpong, N.; Gangadhara Prusty, B.; Kelly, D. W., Thermal buckling and elastic vibration of third-order shear deformable functionally graded beams, Int. J. Mech. Sci., 53, 734-743, (2011)
[64] Wattanasakulpong, N.; Prusty, B.; Kelly, D.; Hoffman, M., (A theoretical investigation on the free vibration of functionally graded beams, Proceedings of the 10th International Conference on Computational Structures Technology, Valencia, (2010)), 285
[65] Witvrouw, A.; Mehta, A., The use of functionally graded poly-sige layers for MEMS applications, Mater. Sci. Forum Trans. Tech. Publ., 255-260, (2005)
[66] Xia, W.; Wang, L.; Yin, L., Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration, Int. J. Eng. Sci., 48, 2044-2053, (2010) · Zbl 1231.74277
[67] Xiang, S.; Kang, G., A nth-order shear deformation theory for the bending analysis on the functionally graded plates, Eur. J. Mech.-A/Solids, 37, 336-343, (2013) · Zbl 1347.74060
[68] Yang, F.; Chong, A.; Lam, D.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743, (2002) · Zbl 1037.74006
[69] Zhang, B.; He, Y.; Liu, D.; Gan, Z.; Shen, L., A novel size-dependent functionally graded curved mircobeam model based on the strain gradient elasticity theory, Compos. Struct., 106, 374-392, (2013)
[70] Zhou, S.; Li, Z., Length scales in the static and dynamic torsion of a circular cylindrical micro-bar, J. Shandong Univ. Technol., 31, 401-407, (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.