×

Static bending and free vibration of organic solar cell resting on Winkler-Pasternak elastic foundation through the modified strain gradient theory. (English) Zbl 1477.74066

Summary: Organic solar cell (OSC), which is deemed to be the most promising third generation solar energy application, is developing vigorously. Based on the modified strain gradient theory (MSGT) and the refined shear deformation plate theory, static bending and free vibration of the size-dependent OSC are thoroughly investigated in this paper. A Winkler-Pasternak elastic foundation is considered for the OSC. A multiscale suitable plate analysis framework (i.e., both macro- and micro plates can be handled) is developed herein. Three length scale parameters are incorporated in the presented analysis to capture the size-dependency of the OSC. By setting two or three of them into zero, the presented model could degenerate into the modified couple stress theory (MCST) and the classical plate theory (CPT). The derivation of the governing equations and the corresponding boundary conditions are conducted by Hamilton principle. The Navier-type solution is employed for solving the governing equations of the simply supported OSC. The accuracy of the presented method is validated. Extensive numerical experiments have been conducted to investigate the differences between the adopted MSGT, the MCST and the CPT. Moreover, the impacts of the geometrical configuration as well as the elastic foundation parameters on the static bending and free vibration characteristics are illustrated in the numerical studies. This paper also explores the thickness of the active layer effect on the free vibration behaviour in combination with the power conversion efficiency (PCE) of the OSC.

MSC:

74K20 Plates
74H45 Vibrations in dynamical problems in solid mechanics
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Ansari, R.; Gholami, R.; Faghih Shojaei, M.; Mohammadi, V.; Sahmani, S., Bending, buckling and free vibration analysis of size-dependent functionally graded circular/annular microplates based on the modified strain gradient elasticity theory, Eur. J. Mech. A Solid., 49, 251-267 (2015) · Zbl 1406.74526
[2] Apaydın, D. H.; Yıldız, D. E.; Cirpan, A.; Toppare, L., Optimizing the organic solar cell efficiency: role of the active layer thickness, Sol. Energy Mater. Sol. Cells, 113, 100-105 (2013)
[3] Borri, C.; Gagliardi, M.; Paggi, M., Fatigue crack growth in Silicon solar cells and hysteretic behaviour of busbars, Sol. Energy Mater. Sol. Cells, 181, 21-29 (2018)
[4] Cardinaletti, I.; Vangerven, T.; Nagels, S.; Cornelissen, R.; Schreurs, D.; Hruby, J.; Vodnik, J.; Devisscher, D.; Kesters, J.; D’Haen, J.; Franquet, A.; Spampinato, V.; Conard, T.; Maes, W.; Deferme, W.; Manca, J. V., Organic and perovskite solar cells for space applications, Sol. Energy Mater. Sol. Cells, 182, 121-127 (2018)
[5] Che, X.; Li, Y.; Qu, Y.; Forrest, S. R., High fabrication yield organic tandem photovoltaics combining vacuum- and solution-processed subcells with 15
[6] Comello, S.; Reichelstein, S.; Sahoo, A., The road ahead for solar PV power, Renew. Sustain. Energy Rev., 92, 744-756 (2018)
[7] Eringen, A. C., Nonlocal polar elastic continua, Int. J. Eng. Sci., 10, 1-16 (1972) · Zbl 0229.73006
[8] Guney, M. S., Solar power and application methods, Renew. Sustain. Energy Rev., 57, 776-785 (2016)
[9] Hosseini-Hashemi, S.; Arpanahi, R. A.; Rahmanian, S.; Ahmadi-Savadkoohi, A., Free vibration analysis of nano-plate in viscous fluid medium using nonlocal elasticity, Eur. J. Mech. A Solid., 74, 440-448 (2019) · Zbl 1406.74195
[10] Hosseini-Hashemi, S.; Fadaee, M.; Atashipour, S. R., A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates, Int. J. Mech. Sci., 53, 11-22 (2011)
[11] Jamalpoor, A.; Ahmadi-Savadkoohi, A.; Hosseini, M.; Hosseini-Hashemi, S., Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplate-systems coupled by a visco- Pasternak medium via nonlocal elasticity theory, Eur. J. Mech. A Solid., 63, 84-98 (2017) · Zbl 1406.74249
[12] Kalowekamo, J.; Baker, E., Estimating the manufacturing cost of purely organic solar cells, Sol. Energy, 83, 1224-1231 (2009)
[13] Ke, L.-L.; Yang, J.; Kitipornchai, S.; Bradford, M. A., Bending, buckling and vibration of size-dependent functionally graded annular microplates, Compos. Struct., 94, 3250-3257 (2012)
[14] Krebs, F. C.; Gevorgyan, S. A.; Alstrup, J., A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies, J. Mater. Chem., 19, 5442 (2009)
[15] Kumavat, P. P.; Sonar, P.; Dalal, D. S., An overview on basics of organic and dye sensitized solar cells, their mechanism and recent improvements, Renew. Sustain. Energy Rev., 78, 1262-1287 (2017)
[16] Lam, D. C.C.; Yang, F.; Chong, A. C.M.; Wang, J.; Tong, P., Experiments and theory in strain gradient elasticity, J. Mech. Phys. Solids, 51, 1477-1508 (2003) · Zbl 1077.74517
[17] Li, K.; Wu, D.; Gao, W.; Song, C., Spectral stochastic isogeometric analysis of free vibration, Comput. Methods Appl. Mech. Eng., 350, 1-27 (2019) · Zbl 1441.74258
[18] Li, Q.; Wang, Q.; Wu, D.; Chen, X.; Yu, Y.; Gao, W., Geometrically nonlinear dynamic analysis of organic solar cell resting on Winkler-Pasternak elastic foundation under thermal environment, Compos. B Eng., 163, 121-129 (2019)
[19] Li, Q.; Wu, D.; Chen, X.; Liu, L.; Yu, Y.; Gao, W., Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation, Int. J. Mech. Sci., 148, 596-610 (2018)
[20] Li, Y. S.; Pan, E., Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, Int. J. Eng. Sci., 97, 40-59 (2015) · Zbl 1423.74401
[21] Lou, J.; He, L., Closed-form solutions for nonlinear bending and free vibration of functionally graded microplates based on the modified couple stress theory, Compos. Struct., 131, 810-820 (2015)
[22] Mbule, P.; Wang, D.; Grieseler, R.; Schaaf, P.; Muhsin, B.; Hoppe, H.; Mothudi, B.; Dhlamini, M., Aluminum-doped ZnO thin films deposited on flat and nanostructured glass substrates: quality and performance for applications in organic solar cells, Sol. Energy, 172, 219-224 (2018)
[23] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao, Z.; Ding, L.; Xia, R.; Yip, H.-L.; Cao, Y.; Chen, Y., Organic and solution-processed tandem solar cells with 17.3
[24] Nguyen, H. X.; Nguyen, T. N.; Abdel-Wahab, M.; Bordas, S. P.A.; Nguyen-Xuan, H.; Vo, T. P., A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory, Comput. Methods Appl. Mech. Eng., 313, 904-940 (2017) · Zbl 1439.74453
[25] Paggi, M.; Berardone, I.; Infuso, A.; Corrado, M., Fatigue degradation and electric recovery in Silicon solar cells embedded in photovoltaic modules, Sci. Rep., 4, 4506 (2015)
[26] Pei, Y. L.; Geng, P. S.; Li, L. X., A modified higher-order theory for FG beams, Eur. J. Mech. A Solid., 72, 186-197 (2018) · Zbl 1406.74402
[27] Shahrbabaki, E. A., On three-dimensional nonlocal elasticity: free vibration of rectangular nanoplate, Eur. J. Mech. A Solid., 71, 122-133 (2018) · Zbl 1406.74326
[28] Shoaee, S.; Briscoe, J.; Durrant, J. R.; Dunn, S., Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance, Adv. Mater., 26, 263-268 (2014)
[29] Solar Panel Patterns_Home Design Ideas [WWW Document], n.d. URL http://cindilemprit.nancymccarthy.net/solar-panel-patterns; Solar Panel Patterns_Home Design Ideas [WWW Document], n.d. URL http://cindilemprit.nancymccarthy.net/solar-panel-patterns
[30] Tagged - OPE Journal - Organic & Printed Electronics [WWW Document], n.d. URL https://www.ope-journal.com/tagged/tag/Greece.html?page_n30=140; Tagged - OPE Journal - Organic & Printed Electronics [WWW Document], n.d. URL https://www.ope-journal.com/tagged/tag/Greece.html?page_n30=140
[31] Thai, C. H.; Ferreira, A. J.M.; Rabczuk, T.; Nguyen-Xuan, H., Size-dependent analysis of FG-CNTRC microplates based on modified strain gradient elasticity theory, Eur. J. Mech. A Solid., 72, 521-538 (2018) · Zbl 1406.74454
[32] Thai, H.-T.; Choi, D.-H., Finite element formulation of various four unknown shear deformation theories for functionally graded plates, Finite Elem. Anal. Des., 75, 50-61 (2013) · Zbl 1368.74066
[33] Thai, H.-T.; Choi, D.-H., A refined plate theory for functionally graded plates resting on elastic foundation, Compos. Sci. Technol., 71, 1850-1858 (2011)
[34] Thai, H.-T.; Kim, S.-E., A size-dependent functionally graded Reddy plate model based on a modified couple stress theory, Compos. B Eng., 45, 1636-1645 (2013)
[35] Thai, H.-T.; Vo, T. P.; Nguyen, T.-K.; Kim, S.-E., A review of continuum mechanics models for size-dependent analysis of beams and plates, Compos. Struct., 177, 196-219 (2017)
[36] Trinh, L. C.; Vo, T. P.; Thai, H.-T.; Mantari, J. L., Size-dependent behaviour of functionally graded sandwich microplates under mechanical and thermal loads, Compos. B Eng., 124, 218-241 (2017)
[37] van Franeker, J. J.; Voorthuijzen, W. P.; Gorter, H.; Hendriks, K. H.; Janssen, R. A.J.; Hadipour, A.; Andriessen, R.; Galagan, Y., All-solution-processed organic solar cells with conventional architecture, Sol. Energy Mater. Sol. Cells, 117, 267-272 (2013)
[38] Wang, Q.; Wu, D.; Tin-Loi, F.; Gao, W., Machine learning aided stochastic structural free vibration analysis for functionally graded bar-type structures, Thin-Walled Struct., 144, 106315 (2019)
[39] Williams, R. B.; Tanimoto, R.; Simonyan, A.; Fuerstenau, S., Vibration characterization of self-cleaning solar panels with piezoceramic actuation, (48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2007), American Institute of Aeronautics and Astronautics: American Institute of Aeronautics and Astronautics Reston, Virigina)
[40] Yang, F.; Chong, A. C.M.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solids Struct., 39, 2731-2743 (2002) · Zbl 1037.74006
[41] Yang, Z.; Huang, Y.; Liu, A.; Fu, J.; Wu, D., Nonlinear in-plane buckling of fixed shallow functionally graded graphene reinforced composite arches subjected to mechanical and thermal loading, Appl. Math. Model., 70, 315-327 (2019) · Zbl 1465.74062
[42] Yang, Z.; Yang, J.; Liu, A.; Fu, J., Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches, Compos. Struct., 204, 301-312 (2018)
[43] Yeh, N.; Yeh, P., Organic solar cells: their developments and potentials, Renew. Sustain. Energy Rev., 21, 421-431 (2013)
[44] Zhang, B.; He, Y.; Liu, D.; Shen, L.; Lei, J., An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation, Appl. Math. Model., 39, 3814-3845 (2015) · Zbl 1443.74228
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.