×

Dynamic stability of a size-dependent micro-beam. (English) Zbl 1406.74344

Summary: The effect of variation of the geometrical dimensions on dynamic instability regions (DIRs) of a rectangular cross-sectioned micro-beam with simply supports is discussed in this study based on modified coupled stress theory. A set of linear equations are derived on basis of the Lagrange method and trial series expansions for vertical displacement and rotation of the Timoshenko micro-beam model while longitudinal displacement is neglected due to the stretching effect of the micro-beams mid-plane. The first approximation of the dynamic stability analysis is done by the application of the Bolotin method besides obtaining the Mathieu-Hill equations. The numerical results demonstrate how the cross section’s height and micro-beams length are the only effective parameters on DIRs somehow that when the geometrical dimensions are increased the DIRs are going to coincide.

MSC:

74H55 Stability of dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74M25 Micromechanics of solids
Full Text: DOI

References:

[1] Abdollahzadeh, G.; Ahmadi, M., Nonlinear vibration analysis of prebuckling and postbuckling in laminated composite beams, Arch. Civ. Eng., 61, 2, 161-178, (2015)
[2] Amazigo, J., Asymptotic analysis of the buckling of imperfect columns on nonlinear elastic foundations, Int. J. Solid Struct., 6, 10, 1341-1356, (1970) · Zbl 0197.21703
[3] Amazigo, J., Asymptotic analysis of the buckling of externally pressurized cylinders with random imperfections, Q. Appl. Math., 31, 4, 429-442, (1974) · Zbl 0345.73043
[4] Amazigo, J.; Budiansky, B., Asymptotic formulas for the buckling stresses of axially compressed cylinders with localized or random axisymmetric imperfections, J. Appl. Mech., 39, 1, 179-184, (1972) · Zbl 0229.73048
[5] Amazigo, J.; Budiansky, B.; Carrier, G., Asymptotic analysis of the buckling of imperfect columns on nonlinear elastic foundations, Int. J. Solid Struct., 6, 10, 1341-1356, (1970) · Zbl 0197.21703
[6] Ansari, R.; Gholami, R.; Shojaei, M. F.; Mohammadi, V.; Sahmani, S., Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory, Compos. Struct., 100, 385-397, (2013)
[7] Ansari, R.; Shojaei, M. F.; Mohammadi, V.; Gholami, R.; Rouhi, H., Nonlinear vibration analysis of microscale functionally graded Timoshenko beams using the most general form of strain gradient elasticity, J. Mech., 30, 02, 161-172, (2014)
[8] Asghari, M.; Kahrobaiyan, M.; Ahmadian, M., A nonlinear Timoshenko beam formulation based on the modified couple stress theory, Int. J. Eng. Sci., 48, 12, 1749-1761, (2010) · Zbl 1231.74258
[9] Baghani, M., Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory, Int. J. Eng. Sci., 54, 99-105, (2012)
[10] Bolotin, V. V., Statistical methods in the nonlinear theory of elastic shells, (1962), National Aeronautics and Space Administration, Institute of Mechanics of the Academy of Sciences USSR
[11] Bolotin, V. V., Nonconservative problems of the theory of elastic stability, (1963), Macmillan · Zbl 0121.41305
[12] Brown, J. E.; Hutt, J. M.; Salma, A. E., Finite element solution to dynamic stability of bars, AIAA J., 6, 7, 1423-1425, (1968)
[13] Chen, X.; Meguid, S., Snap-through buckling of initially curved microbeam subject to an electrostatic force, Proc. R. Soc. A. The Royal Soc., (2015), 20150072 · Zbl 1371.74106
[14] Dai, H.; Wang, Y.; Wang, L., Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory, Int. J. Eng. Sci., 94, 103-112, (2015) · Zbl 1423.74463
[15] Dehrouyeh-Semnani, A. M.; Bahrami, A., On size-dependent Timoshenko beam element based on modified couple stress theory, Int. J. Eng. Sci., 107, 134-148, (2016) · Zbl 1423.74467
[16] Dehrouyeh-Semnani, A. M.; BehboodiJouybari, M.; Dehrouyeh, M., On size-dependent lead-lag vibration of rotating microcantilevers, Int. J. Eng. Sci., 101, 50-63, (2016) · Zbl 1423.74385
[17] Dehrouyeh-Semnani, A. M.; Dehrouyeh, M.; Torabi-Kafshgari, M.; Nikkhah-Bahrami, M., An investigation into size-dependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams, Int. J. Eng. Sci., 96, 68-85, (2015) · Zbl 1423.74386
[18] Elishakoff, I., Resolution of the twentieth century conundrum in elastic stability, (2014), World Scientific Publishing Company
[19] Farokhi, H.; Ghayesh, M. H., Nonlinear dynamical behaviour of geometrically imperfect microplates based on modified couple stress theory, Int. J. Mech. Sci., 90, 133-144, (2015)
[20] Farokhi, H.; Ghayesh, M. H., Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams, Int. J. Eng. Sci., 91, 12-33, (2015) · Zbl 1423.74694
[21] Farokhi, H.; Ghayesh, M. H., Size-dependent parametric dynamics of imperfect microbeams, Int. J. Eng. Sci., 99, 39-55, (2016) · Zbl 1423.74472
[22] Farokhi, H.; Ghayesh, M. H., Nonlinear resonant response of imperfect extensible Timoshenko microbeams, Int. J. Mech. Mater. Des., 13, 1, 43-55, (2017)
[23] Farokhi, H.; Ghayesh, M. H., Supercritical nonlinear parametric dynamics of Timoshenko microbeams, Commun. Nonlinear Sci. Numer. Simulat., 59, 592-605, (2018) · Zbl 1510.74071
[24] Farokhi, H.; Ghayesh, M. H.; Amabili, M., Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory, Int. J. Eng. Sci., 68, 11-23, (2013) · Zbl 1423.74473
[25] Ganguly, S.; Datta, P. K., Study of second regions of dynamic instability of a uniform beam, Int. J. Mech. Edu., 32, 4, 292-299, (2004)
[26] Ghayesh, M. H.; Amabili, M.; Farokhi, H., Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams, Int. J. Eng. Sci., 71, 1-14, (2013) · Zbl 1423.74479
[27] Ghayesh, M. H.; Farokhi, H., Nonlinear dynamics of microplates, Int. J. Eng. Sci., 86, 60-73, (2015) · Zbl 1423.74543
[28] Ghayesh, M. H.; Farokhi, H.; Gholipour, A., Oscillations of functionally graded microbeams, Int. J. Eng. Sci., 110, 35-53, (2017) · Zbl 1406.74291
[29] Ghayesh, M. H.; Farokhi, H.; Gholipour, A., Vibration analysis of geometrically imperfect three-layered shear-deformable microbeams, Int. J. Mech. Sci., 122, 370-383, (2017)
[30] Ghayesh, M. H.; Farokhi, H.; Gholipour, A.; Tavallaeinejad, M., Nonlinear oscillations of functionally graded microplates, Int. J. Eng. Sci., 122, 56-72, (2018)
[31] Ghayesh, M. H.; Farokhi, H.; Hussain, S., Viscoelastically coupled size-dependent dynamics of microbeams, Int. J. Eng. Sci., 109, 243-255, (2016) · Zbl 1423.74188
[32] Gholipour, A.; Farokhi, H.; Ghayesh, M. H., In-plane and out-of-plane nonlinear size-dependent dynamics of microplates, Nonlinear Dynam., 79, 3, 1771-1785, (2015)
[33] Jomehzadeh, E.; Noori, H.; Saidi, A., The size-dependent vibration analysis of micro-plates based on a modified couple stress theory, Phys. E Low-dimens. Syst. Nanostruct., 43, 4, 877-883, (2011), 10.1016/j.physe.2010.11.005
[34] Kahrobaiyan, M.; Asghari, M.; Ahmadian, M., A Timoshenko beam element based on the modified couple stress theory, Int. J. Mech. Sci., 79, 75-83, (2014)
[35] Kahrobaiyan, M.; Asghari, M.; Rahaeifard, M.; Ahmadian, M., A nonlinear strain gradient beam formulation, Int. J. Eng. Sci., 49, 11, 1256-1267, (2011) · Zbl 1423.74487
[36] Ke, L.-L.; Wang, Y.-S., Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory, Compos. Struct., 93, 2, 342-350, (2011), 10.1016/j.compstruct.2010.09.008
[37] Kong, S.; Zhou, S.; Nie, Z.; Wang, K., The size-dependent natural frequency of Bernoulli-Euler micro-beams, Int. J. Eng. Sci., 46, 5, 427-437, (2008) · Zbl 1213.74189
[38] Kosmatka, J., An improved two-node finite element for stability and natural frequencies of axial-loaded Timoshenko beams, Comput. Struct., 57, 1, 141-149, (1995) · Zbl 0918.73150
[39] Krasovskii, N. N., Stability of motion: applications of Lyapunov’s second method to differential systems and equations with delay, (1963), Stanford University Press · Zbl 0109.06001
[40] Li, Y.; Pan, E., Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory, Int. J. Eng. Sci., 97, 40-59, (2015) · Zbl 1423.74401
[41] Ma, H.; Gao, X.-L.; Reddy, J., A microstructure-dependent Timoshenko beam model based on a modified couple stress theory, J. Mech. Phys. Solid., 56, 12, 3379-3391, (2008), 10.1016/j.jmps.2008.09.007 · Zbl 1171.74367
[42] Mohammadimehr, M.; Mohammadi Hooyeh, H.; Afshari, H.; Salarkia, M., Size-dependent effects on the vibration behavior of a ti-moshenko microbeam subjected to pre-stress loading based on DQM, Mech. Adv. Comp. Struct., 3, 2, 99-112, (2016)
[43] Mojahedi, M.; Rahaeifard, M., A size-dependent model for coupled 3D deformations of nonlinear microbridges, Int. J. Eng. Sci., 100, 171-182, (2016) · Zbl 1423.74504
[44] Mühlhaus, E. H.; Wiley, J.; Ch, N.; Lakes, R., Continuum models for materials with microstructure, (1995) · Zbl 0878.73002
[45] Nayfeh, A. H., Perturbation methods, (2008), Wiley
[46] Noori, J.; Fariborz, S.; Vafa, J., A higher-order micro-beam model with application to free vibration, Mech. Adv. Mater. Struct., 23, 4, 443-450, (2016)
[47] Saffari, S.; Hashemian, M.; Toghraie, D., Dynamic stability of functionally graded nanobeam based on nonlocal Timoshenko theory considering surface effects, Phys. B Condens. Matter, (2017)
[48] Sahmani, S.; Ansari, R.; Gholami, R.; Darvizeh, A., Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory, Compos. B Eng., 51, 44-53, (2013)
[49] Sarı, G.; Pakdemirli, M., Vibrations of a slightly curved microbeam resting on an elastic foundation with nonideal boundary conditions, Math. Probl Eng., 2013, (2013) · Zbl 1299.74084
[50] Simitses, G. J.; Hodges, D. H., Fundamentals of structural stability, (2006), Butterworth-Heinemann · Zbl 1112.74001
[51] Xia, W.; Wang, L.; Yin, L., Nonlinear non-classical microscale beams: static bending, postbuckling and free vibration, Int. J. Eng. Sci., 48, 12, 2044-2053, (2010) · Zbl 1231.74277
[52] Xie, W. C., Dynamic stability of structures, (2006), Cambridge University Press · Zbl 1116.70001
[53] Yang, F.; Chong, A.; Lam, D. C.C.; Tong, P., Couple stress based strain gradient theory for elasticity, Int. J. Solid Struct., 39, 10, 2731-2743, (2002) · Zbl 1037.74006
[54] Yin, L.; Qian, Q.; Wang, L.; Xia, W., Vibration analysis of microscale plates based on modified couple stress theory, Acta Mech. Solida Sin., 23, 5, 386-393, (2010)
[55] Zenkour, A. M.; Abouelregal, A. E.; Alnefaie, K. A.; Abu-Hamdeh, N. H.; Aljinaidi, A. A.; Aifantis, E. C., State space approach for the vibration of nanobeams based on the nonlocal thermoelasticity theory without energy dissipation, J. Mech. Sci. Technol., 29, 7, 2921-2931, (2015)
[56] Zhang, B.; He, Y.; Liu, D.; Shen, L.; Lei, J., An efficient size-dependent plate theory for bending, buckling and free vibration analyses of functionally graded microplates resting on elastic foundation, Appl. Math. Model., 39, 13, 3814-3845, (2015) · Zbl 1443.74228
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.