×

A characteristic-spectral-mixed scheme for six-dimensional Wigner-Coulomb dynamics. (English) Zbl 1536.81105

Summary: Numerical resolution for 6-D Wigner dynamics under the Coulomb potential is faced with the combined challenges of high dimensionality, nonlocality, oscillation, and singularity. In particular, the extremely huge memory storage of 6-D grids hinders the usage of all existing deterministic numerical schemes, which is well known as the curse of dimensionality. To surmount these difficulties, we propose a massively parallel solver, termed the characteristic-spectral-mixed (CHASM) scheme, by fully exploiting two distinct features of the Wigner equation: locality of spatial advection and nonlocality of quantum interaction. Our scheme utilizes the local cubic B-spline basis to interpolate the local spatial advection. The key is to use a perfectly matched boundary condition to give a closure of spline coefficients, so that distributed pieces can recover the global one as accurately as possible owing to the rapid decay of wavelet basis in the dual space, and communication costs are significantly reduced. To resolve the nonlocal pseudodifferential operator with a singular symbol, CHASM further adopts the truncated kernel method to attain a highly efficient approximation. Several typical experiments including the quantum harmonic oscillator and the 1s state of hydrogen demonstrate the accuracy and efficiency of CHASM. Nonequilibrium electron-proton couplings are also clearly displayed and illuminate the uncertainty principle and quantum tunneling in phase space. Finally, the scalability of CHASM up to 16000 cores is presented.

MSC:

81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
65M25 Numerical aspects of the method of characteristics for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65Y05 Parallel numerical computation
35S05 Pseudodifferential operators as generalizations of partial differential operators
78A35 Motion of charged particles
70H03 Lagrange’s equations
74D05 Linear constitutive equations for materials with memory
65D40 Numerical approximation of high-dimensional functions; sparse grids
81P55 Special bases (entangled, mutual unbiased, etc.)
65T60 Numerical methods for wavelets
81V45 Atomic physics
81V35 Nuclear physics

Software:

Algorithm 916

References:

[1] Dey, S., Jena, J., Mohapatra, E., Dash, T. P., Kas, S., and Maiti, C. K., Design and simulation of vertically-stacked nanowire transistors at 3nm technology nodes, Phys. Scripta, 95 (2020), 014001.
[2] Graziani, F. R., Bauer, J. D., and Murillo, M. S., Kinetic theory molecular dynamics and hot dense matter: Theoretical foundations, Phys. Rev. E, 90 (2014), 033104.
[3] Rundle, R., Davies, B., Dwyer, V. M., Todd, T., and Everitt, M., Visualization of correlations in hybrid discrete-continuous variable quantum systems, J. Phys. Commun., 4 (2020), 025002.
[4] Tian, J., Wang, X., and Eberly, J. H., Numerical detector theory for the longitudinal momentum distribution of the electron in strong field ionization, Phys. Rev. Lett., 118 (2017), 213201.
[5] Han, M., Ge, P., Fang, Y., Yu, X., Guo, Z., Ma, X., Deng, Y., Gong, Q., and Liu, Y., Unifying tunneling pictures of strong-field ionization with an improved attoclock, Phys. Rev. Lett., 123 (2019), 073201.
[6] Wigner, E., On the quantum corrections for thermodynamic equilibrium, Phys. Rev., 40 (1932), pp. 749-759. · JFM 58.0948.07
[7] Benam, M., Ballichia, M., Weinbub, J., Selberherr, S., and Nedjalkov, M., A computational approach for investigating Coulomb interaction using Wigner-Poisson coupling, J. Comput. Electron., 20 (2021), pp. 755-784.
[8] Nedjalkov, M., Querlioz, D., Dollfus, P., and Kosina, H., Wigner function approach, in Nano-Electronic Devices, Springer, New York, 2011.
[9] Kurtsiefer, C., Pfau, T., and Mlynek, J., Measurement of the Wigner function of an ensemble of helium atoms, Nature, 386 (1997), pp. 150-153.
[10] Davies, B. I., Rundle, R., Dwyer, V. M., Todd, T., and Everitt, M., Visualizing spin degrees of freedom in atoms and molecules, Phys. Rev. A, 100 (2019), pp. 2469-9934.
[11] Curtright, T. L., Fairlie, D. B., and Zachos, C. K., A Concise Treatise on Quantum Mechanics in Phase Space, World Scientific, River Edge, NJ, 2013. · Zbl 1291.81003
[12] Kosina, H., Nedjalkov, M., and Selberherr, S., A Monte Carlo method seamlessly linking quantum and classical transport calculations, J. Comput. Electron., 2 (2003), pp. 147-151.
[13] Muscato, O. and Wagner, W., A class of stochastic algorithms for the Wigner equation, SIAM J. Sci. Comput., 38 (2016), pp. A1483-A1507. · Zbl 1338.65017
[14] Shao, S. and Xiong, Y., A branching random walk method for many-body Wigner quantum dynamics, Numer. Math. Theory Methods Appl., 12 (2019), pp. 21-71. · Zbl 1438.60113
[15] Frensley, W. R., Effect of inelastic processes on the self-consistent potential in the resonant-tunneling diode, Solid State Electron., 32 (1989), pp. 1235-1239.
[16] Ringhofer, C., A spectral method for the numerical simulation of quantum tunneling phenomena, SIAM J. Numer. Anal., 27 (1990), pp. 32-50. · Zbl 0688.65081
[17] Arnold, A. and Ringhofer, C., Operator splitting methods applied to spectral discretizations of quantum transport equations, SIAM J. Numer. Anal., 32 (1995), pp. 1876-1894. · Zbl 0847.65074
[18] Shao, S., Lu, T., and Cai, W., Adaptive conservative cell average spectral element methods for transient Wigner equation in quantum transport, Commun. Comput. Phys., 9 (2011), pp. 711-739. · Zbl 1364.65211
[19] Xiong, Y., Chen, Z., and Shao, S., An advective-spectral-mixed method for time-dependent many-body Wigner simulations, SIAM J. Sci. Comput., 38 (2016), pp. B491-B520. · Zbl 1382.65348
[20] Chen, Z., Shao, S., and Cai, W., A high order efficient numerical method for 4-D Wigner equation of quantum double-slit interferences, J. Comput. Phys., 396 (2019), pp. 54-71. · Zbl 1452.65270
[21] Van de Put, M. L., Sorée, B., and Magnus, W., Efficient solution of the Wigner-Liouville equation using a spectral decomposition of the force field, J. Comput. Phys., 350 (2017), pp. 314-325.
[22] Furtmaier, O., Succi, S., and Mendoza, M., Semi-spectral method for the Wigner equation, J. Comput. Phys., 305 (2016), pp. 1015-1036. · Zbl 1349.81017
[23] Zhan, H., Cai, Z., and Hu, G., The Wigner function of ground state and one-dimensional numerics, J. Comput. Phys., 449 (2022), 110780. · Zbl 07524777
[24] Gamba, I., Gualdani, M., and Sharp, R., An adaptable discontinuous Galerkin scheme for the Wigner-Fokker-Planck equation, Commun. Math. Sci., 7 (2009), pp. 635-664. · Zbl 1185.65180
[25] Dorda, A. and Schürrer, F., A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes, J. Comput. Phys., 284 (2015), pp. 95-116. · Zbl 1351.81019
[26] Malevsky, A. V. and Thomas, S. J., Parallel algorithms for semi-Lagrangian advection, Internat. J. Numer. Methods Fluids, 25 (1997), pp. 455-473. · Zbl 0910.76063
[27] Kormann, K., Reuter, K., and Rampp, M., A massively parallel semi-Lagrangian solver for the six-dimensional Vlasov-Poisson equation, Int. J. High Perform. Comput. Appl., 33 (2019), pp. 924-947.
[28] Chui, C. K., An Introduction to Wavelets, Academic Press, New York, 1992. · Zbl 0925.42016
[29] Goudon, T., Analysis of a semidiscrete version of the Wigner equation, SIAM J. Numer. Anal., 40 (2002), pp. 2007-2025. · Zbl 1037.65094
[30] Vico, F., Greengard, L., and Ferrando, M., Fast convolution with free-space Green’s functions, J. Comput. Phys., 323 (2016), pp. 191-203. · Zbl 1415.65269
[31] Greengard, L., Jiang, S., and Zhang, Y., The anisotropic truncated kernel method for convolution with free-space Green’s functions, SIAM J. Sci. Comput., 40 (2018), pp. A3733-A3754. · Zbl 1481.65262
[32] Liu, X., Tang, Q., Zhang, S., and Zhang, Y., On Optimal Zero-Padding of Kernel Truncation Method, preprint, arXiv:2209.12180, 2022.
[33] Pak, M. V. and Hammes-Schiffer, S., Electron-proton correlation for hydrogen tunneling systems, Phys. Rev. Lett., 92 (2004), 103002.
[34] Dimarco, G., Loubère, R., Narski, J., and Rey, T., An efficient numerical method for solving the Boltzmann equation in multidimensions, J. Comput. Phys., 353 (2018), pp. 46-81. · Zbl 1380.76088
[35] Crouseilles, N., Einkemmer, L., and Massot, J., Exponential methods for solving hyperbolic problems with application to collisionless kinetic equations, J. Comput. Phys., 420 (2020), 109688. · Zbl 07506617
[36] Crouseilles, N., Latu, G., and Sonnendrücker, E., A parallel Vlasov solver based on local cubic spline interpolation on patches, J. Comput. Phys., 228 (2009), pp. 1429-1446. · Zbl 1171.76044
[37] Kormann, K., A semi-Lagrangian Vlasov solver in tensor train format, SIAM J. Sci. Comput., 37 (2015), pp. B613-B632. · Zbl 1325.76132
[38] Xiong, Y., Zhang, Y., and Shao, S., Performance Evaluations on the Parallel CHAracteristic-Spectral-Mixed (CHASM) Scheme, preprint, arXiv:2205.01922, 2022.
[39] Rudin, W., Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991. · Zbl 0867.46001
[40] Zaghloul, M. R. and Ali, A. N., Algorithm 916: Computing the Faddeyeva and Voigt functions, ACM Trans. Math. Software, 38 (2011), 15. · Zbl 1365.65052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.