×

Multi-type-output assisted cloning of unknown single-qubit states. (English) Zbl 1537.81021

Summary: Fusing the ideas of quantum multicast communication and quantum assisted cloning, we propose a scheme for two-type-output assisted cloning of arbitrary unknown single-qubit states, which can synchronously output accurate copies and orthogonal-complement copies of two different arbitrary unknown single-qubit states with a minimal assistance from a state preparer. In this scheme, a four-qubit maximally entangled cluster channel, classical communication, and several local quantum gates are employed. Quantum teleportation is required in the first stage of the scheme and in the second stage, the state preparer disentangles the left over entangled states by a two-qubit projective measurement process and conveys some classical messages to different parties so that accurate copies or orthogonal-complement copies are produced. To produce more copies or orthogonal-complement copies in the two-type-output assisted cloning scheme, we discuss our scheme for producing two copies and three copies of each unknown single-qubit state and suggest how to generalise this to \(N\) copies and orthogonal-complement copies of each unknown single-qubit state using the product of two multi-qubit GHZ-type states as quantum channel. In addition, by using the product of \(N\) EPR pairs as the quantum channel, the two-type-output assisted cloning scheme for arbitrary unknown single-qubit states is extended to the case of \(N\)-type-output \((N \geq 3)\) to meet the needs of the development of quantum networks.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81P50 Quantum state estimation, approximate cloning
81P48 LOCC, teleportation, dense coding, remote state operations, distillation
46L30 States of selfadjoint operator algebras
81P40 Quantum coherence, entanglement, quantum correlations
60G35 Signal detection and filtering (aspects of stochastic processes)
70F05 Two-body problems
81P47 Quantum channels, fidelity
68Q06 Networks and circuits as models of computation; circuit complexity
Full Text: DOI

References:

[1] Kollmitzer, C.; Pivk, M., Applied quantum cryptogaraphy (2010), Heidelberg: Springer, Heidelberg · Zbl 1184.81004 · doi:10.1007/978-3-642-04831-9
[2] Bennett, C. H., Brassard, G., Crepeau, et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895-1899 (1993) · Zbl 1051.81505
[3] Peng, JY; He, Y., Annular controlled teleportation, Int. J. Theor. Phys., 58, 3271-3281 (2019) · Zbl 1428.81047 · doi:10.1007/s10773-019-04202-8
[4] Zhou, P.; Li, HX; Deng, FG, Multiparty-controlled teleportation of anarbitrary m-qudit state witha pure entangled quantum channel, J. Phys. A: Math. Theor., 40, 13121 (2007) · Zbl 1124.81011 · doi:10.1088/1751-8113/40/43/019
[5] Peng, JY; Tang, L.; Yang, Z., Cyclic teleportation in noisy chanel with nondemolition parity analysis and weak measurement, Quantum Inf. Process., 210, 114 (2022) · Zbl 1508.81379 · doi:10.1007/s11128-022-03461-5
[6] Lo, HK; Curty, M.; Qi, B., Measurement-device-independent quantum key distribution, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.130503
[7] Huang, W.: Improved multiparty quantum key agreement in travelling mode. Sci. China Physics, Mech. Astron. 59(12), 120311 (2016)
[8] Pati, AK, Minimum classical bit for remote preparation and measurement of a qubit, Phys. Rev. A, 63 (2001) · doi:10.1103/PhysRevA.63.014302
[9] Peng, JY, Remote preparation of general one-, two- and three-qubit states via \(\chi \)-type entangled states, Int. J. Theor. Phys., 59, 3789-3803 (2020) · Zbl 1462.81053 · doi:10.1007/s10773-020-04632-9
[10] Li, JF; Liu, JM; Feng, XL, Deterministic remote two-qubit state preparation in dissipative environments, Quantum Inf. Process., 15, 2155-2168 (2016) · Zbl 1338.81102 · doi:10.1007/s11128-016-1257-4
[11] Peng, JY; Bai, MQ; Tang, L., Perfect controlled joint remote state preparation of arbitrary multi-qubit states independent of entanglement degree of the quantum channel, Quantum Inf. Process., 20, 340 (2021) · Zbl 1509.81021 · doi:10.1007/s11128-021-03282-y
[12] Hillery, M.; Bužek, V.; Berthiaume, A., Quantum secret sharing, Phys. Rev. A, 59, 1829-1834 (1999) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[13] Peng, JY; Mo, ZW, Quantum sharing an unknown multi-particle state via POVM, Int. J. Theor. Phys., 52, 2, 620-633 (2013) · Zbl 1264.81090 · doi:10.1007/s10773-012-1369-2
[14] Shi, RH; Huang, LS; Yang, W., Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state, Quantum Inf. Process., 10, 53-61 (2011) · Zbl 1209.81054 · doi:10.1007/s11128-010-0176-z
[15] Peng, JY; Bai, MQ; Mo, ZW, Hierarchical and probabilistic quantum state sharing via a non-maximally entangled \(|\chi \rangle\) state, Chinese Physics B, 23 (2014) · doi:10.1088/1674-1056/23/1/010304
[16] Lai, H.; Pieparzyk, J.; Luo, MX, High-capacity (2,3) threshold quantum secret sharing based on asymmetric quantum lossy channels, Quantum Inf. Process., 19, 157 (2020) · Zbl 1508.81305 · doi:10.1007/s11128-020-02647-z
[17] Peng, JY; Bai, MQ; Mo, ZW, Bidirectional quantum states sharing, Int. J. Theor. Phys., 55, 2481-2489 (2016) · Zbl 1338.81105 · doi:10.1007/s10773-015-2885-7
[18] Pati, A.K.: “Assisted cloning” and “orthogonal-complementing” of an unknown state. Phys. Rev. A 16, 022308 (2000)
[19] Scarani, V.; Lblisdir, S.; Gisin, N., Quantum cloning, Rev. Mod. Phys., 77, 1225 (2005) · Zbl 1205.81030 · doi:10.1103/RevModPhys.77.1225
[20] Han, LF; Yuan, H.; Yang, M., Assisted cloning of an arbitrary unknown tow-qubit state via agenuine four-qubit entangled state and positive operator-value measure, Indian J. Pure Appl. Phys., 52, 563-570 (2014)
[21] Murao, M.; Vedral, V., Remote information concentration using a bound entangled state[J], Phys. Rev. Lett., 86, 2, 352-355 (2001) · doi:10.1103/PhysRevLett.86.352
[22] Peng, JY; Luo, MX; Mo, ZW, Remote information concentration via four-particle cluster state and by positive operator-value measurement, International Journal of Modern Physics B, 27, 18, 1350091 (2013) · Zbl 1277.81035 · doi:10.1142/S0217979213500914
[23] Peng, JY; Lei, HX; Mo, ZW, Faithful remote information concentration based on the optimal universal \(1\rightarrow 2\) telecloning of arbitrary two-qubit states, Int. J. Theor. Phys., 53, 5, 1637-1647 (2014) · Zbl 1304.81057 · doi:10.1007/s10773-013-1961-0
[24] Wootters, WK; Zurek, WH, A single quantum cannot be cloned, Nature, 299, 5886, 802-803 (1982) · Zbl 1369.81022 · doi:10.1038/299802a0
[25] Dieks, D., Communication by EPR devices, Phys. Lett. A, 92, 6, 271-272 (1982) · doi:10.1016/0375-9601(82)90084-6
[26] Yuen, HP, Amplification of quantum states and noiseless photon amplifiers[J], Phys. Lett. A, 113, 8, 405-407 (1986) · doi:10.1016/0375-9601(86)90660-2
[27] Pati, AK; Braunstein, SL, Impossibility of deleting an unknown quantum state, Nature, 404, 6774, 164-165 (2000) · doi:10.1038/404130b0
[28] Zurek, WH, Quantum cloning. Schrödinger’s sheep, Nature, 404, 6774, 130 (2000) · doi:10.1038/35004684
[29] Bužek, V.; Hillery, M.; Werner, R., Optimal manipulations with qubits: universal NOT gate, Phys. Rev. A, 60, R2626 (1999) · doi:10.1103/PhysRevA.60.R2626
[30] Gisin, N.; Popescu, S., Spin flips and quantum information for antiparallel spins, Phys. Rev. Lett., 83, 432 (1999) · doi:10.1103/PhysRevLett.83.432
[31] Jozsa, R.: A stronger no-cloning theorem. doi:10.48550/arXiv.quant-ph/0204153
[32] Pati, AK, Quantum cobwebs: Universal entangling of quantum states, Pramana, 59, 2, 221-228 (2002) · doi:10.1007/s12043-002-0111-7
[33] Landauer, R., Irreversibility and Heat Generation in the Computing Process, IBM J. Res. Develop., 5, 183 (1961) · Zbl 1160.68305 · doi:10.1147/rd.53.0183
[34] Bennett, CH, The thermodynamics of computation-a review, Int. J. Theoret. Phys., 21, 905-940 (1982) · doi:10.1007/BF02084158
[35] Bužek, V.; Hillery, M., Quantum Copying: Beyond the No-Cloning Theorem, Phys. Rev. A, 54, 3, 1844 (1996) · doi:10.1103/PhysRevA.54.1844
[36] Hillery, M.; Bužek, V., Quantum copying: Fundamental inequalities, Phys. Rev. A, 56, 1212-1216 (1997) · doi:10.1103/PhysRevA.56.1212
[37] Gisin, N.; Massar, S., Optimal quantum cloning machines, Phys. Rev. Lett., 79, 2153-2156 (1997) · doi:10.1103/PhysRevLett.79.2153
[38] Bruß, D., Divincenzo, D. P., Ekert. A., et al.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57(4), 2368-2378 (1998)
[39] Duan, LM; Guo, GC, Probabilistic cloning and identification of linearly independent states, Phys. Rev. Lett., 80, 22, 4999-5002 (1998) · doi:10.1103/PhysRevLett.80.4999
[40] Murao, M.; Jonathan, D.; Plenio, MB, Quantum telecloning and multiparticle entanglement, Phys. Rev. A, 59, 1, 156-161 (1999) · doi:10.1103/PhysRevA.59.156
[41] Bruß, D.; Cinchetti, M.; Mauro, DG, Phase covariant quantum cloning, Phys. Rev. A, 62, 1 (2000) · doi:10.1103/PhysRevA.62.012302
[42] Werner, R., Optimal cloning of pure states, Phys. Rev. A, 58, 1827-1832 (1998) · doi:10.1103/PhysRevA.58.1827
[43] Fan, H., Quantum cloning of mixed states in symmetric subspace, Phys. Rev. A, 68 (2003) · doi:10.1103/PhysRevA.68.054301
[44] Zou, XB; Pahlke, K.; Mathis, W., Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED, Phys. Rev. A, 67 (2003) · doi:10.1103/PhysRevA.67.024304
[45] Zhan, YB, Assisted cloning of an unknown two-particle entangled state, Phys. Lett. A, 336, 4-5, 317-323 (2005) · Zbl 1136.81324 · doi:10.1016/j.physleta.2004.12.073
[46] Ma, PC; Zhan, YB, Scheme for implementing assisted cloning of an unknown d-dimension equatorial quantum state by remote state preparation, Commun. Theor. Phys., 51, 57-59 (2009) · Zbl 1171.81340 · doi:10.1088/0253-6102/51/1/11
[47] Han, LF; Yuan, H.; Yang, M., Assisted cloning of anarbitrary unknown two-qubit state via a genuine four-qubit entangled state and positive operator-valued measure, Indian J. Pure Appl. Phys., 52, 563-570 (2014)
[48] Hou, K.; Shi, SH, Scheme for cloning an unknown entangled state with assistance via non-maximally entangled cluster states, Int. J. Theor. Phys., 48, 1, 167-177 (2009) · Zbl 1162.81315 · doi:10.1007/s10773-008-9792-0
[49] Briegel, HJ; Raussendorf, R., Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett., 86, 910 (2001) · doi:10.1103/PhysRevLett.86.910
[50] Zhan, Y., A scheme for assisted cloning of a two-particle entangled state via GHZ class states, Chin. Opt. Lett., 3, 101, S286-S289 (2005)
[51] Ming, F.; Yi, ML; Jun, L., Assisted Cloning and Orthogonal Complementing of an Arbitrary Unknown Two-Qubit Entangled State, Commun. Theor. Phys., 46, 5, 849-852 (2006) · doi:10.1088/0253-6102/46/5/016
[52] Zhang, JZ; Xia, Y., Use of two-particle entangled states to teleport unknown two-particle quantum state, Comput. Eng. Appl., 51, 18, 82-85 (2015)
[53] Han, L. F.: Theoretical study on quantum state teleportation, assisted cloning and reconstruction. Anhui University (2015)
[54] Araneda, G.; Cisternas, N.; Delgado, A., Telecloning of qudits via partially entangled states, Quantum Inf. Process., 15, 3443-3458 (2016) · Zbl 1348.81156 · doi:10.1007/s11128-016-1348-2
[55] Yu, Y.; Zhao, N., General quantum broadcast and multi-cast communicatioms based on entanglement, Optics. Express., 26, 12, 29296 (2018) · doi:10.1364/OE.26.029296
[56] Peng, JY; Yang, Z.; Tang, L., Controlled quantum broadcast and multi-cast communications ofcomplex coefficient single-qubit states, Quantum Inf. Process., 21, 287 (2022) · Zbl 1508.81320 · doi:10.1007/s11128-022-03629-z
[57] Yu, Y.; Zha, XW; Li, W., Quantum broadcast scheme and multi-output quantum teleportation via four-qubit cluster state, Quantum. Inf. Process., 16, 2, 41 (2017) · Zbl 1387.81136 · doi:10.1007/s11128-016-1500-z
[58] Nielsen, MA; Chuang, IL, Quantum computation and quantum information (2000), New York: Cambridge University Press, New York · Zbl 1049.81015
[59] Bouwmeester, D.; Pan, JW; Mattle, K., Experimental quantum teleportation, Nature, 390, 390, 575 (1997) · Zbl 1369.81006 · doi:10.1038/37539
[60] Deng, FG; Li, XH; Zhou, HY, Improving the security of multiparty quantum secret sharing against Trojan horse attack, Phys. Rev. A, 72 (2005) · doi:10.1103/PhysRevA.72.044302
[61] Zhang, Z. J. , Yang, J. , Man, Z. X. , et al.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D - Atomic, Molecular, Optical Plasma Phys. 33(1), 133-136 (2005)
[62] Yang, X. W., Chen, X.: Preparation of Bell states by dissipating quantum Zeno dynamics and Rydberg pump effect. Journal of Fujian Normal University: Natural Science Edition 37(1), 8(2021)
[63] Ding, D.; Yan, FL; Gao, T., Entangler and analyzer for multiphoton Greenberger-Horne-Zeilinger states using weak nonlinearities, Sci. China Phys. Mechanics Astronomy, 57, 11, 2098-2103 (2014) · doi:10.1007/s11433-014-5498-x
[64] Zeng, S.; Nie, YY, Remote preparation scheme for 4-particle cluster states, Journal of Jiangxi Normal University: Natural Science Edition, 39, 1, 79-81 (2015)
[65] Barrent, SD; Kok, P.; Nemoto, K., Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities, Phys. Rev. A, 71 (2005) · doi:10.1103/PhysRevA.71.060302
[66] Grice, WP, Arbitrarity complete Bell-state measurement using only linear optical ements, Phys. Rev. A, 84, 4, 5912-5916 (2011) · doi:10.1103/PhysRevA.84.042331
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.