×

Multiplicity results for fractional Schrödinger-Kirchhoff systems involving critical nonlinearities. (English) Zbl 1518.35628

Summary: In this article, we study certain critical Schrödinger-Kirchhoff-type systems involving the fractional \(p\)-Laplace operator on a bounded domain. More precisely, using the properties of the associated functional energy on the Nehari manifold sets and exploiting the analysis of the fibering map, we establish the multiplicity of solutions for such systems.

MSC:

35R11 Fractional partial differential equations
35J35 Variational methods for higher-order elliptic equations
35J62 Quasilinear elliptic equations
35P30 Nonlinear eigenvalue problems and nonlinear spectral theory for PDEs

References:

[1] D. Abid, K. Akrout, and A. Ghanmi, Existence results for sub-critical and critical p-fractional elliptic equations via Nehari manifold method, J. Elliptic Parabol. Equ. 8 (2022), no. 1, 293-312. · Zbl 1490.35243
[2] R. A. Adams and J. J. Fournier, Sobolev Spaces, 2nd ed., Pure and Applied Mathematics, vol. 140, Elsevier, Amsterdam, 2003. · Zbl 1098.46001
[3] K. Akrout, M. Azouzi, and H. Yousfi, Existence and multiplicity results for critical and sub-critical p-fractional elliptic equations via Nehari manifold method, Novi Sad J. Math. 52 (2022), no. 2, 11-126. · Zbl 1518.35614
[4] K. Akrout, N. E. Soltani, and S. Zediri, Existence and multiplicity of solutions for singular fractional elliptic system via the Nehari manifold approach, Novi Sad J. Math. 51 (2021), no. 1, 163-183. · Zbl 1485.35188
[5] G. Alberti, G. Bouchitté, and P. Seppecher, Phase transition with the line-tension effect, Arch. Ration. Mech. Anal. 144 (1998), no. 1, 1-46. · Zbl 0915.76093
[6] G. Autuori and P. Pucci, Elliptic problems involving the fractional Laplacian in Rn, J. Differ. Equ. 255 (2013), no. 8, 2340-2362. · Zbl 1284.35171
[7] E. Azroul, A. Benkirane, A. Boumazourh, and M. Srati, Multiple solutions for a nonlocal fractional (p,q)-Schrödinger-Kirchhoff-type system, Nonlinear Stud. 27 (2020), no. 4, 915-933. · Zbl 1478.35219
[8] E. Azroul, A. Benkirane, A. Boumazourh, and M. Srati, Three solutions for a nonlocal fractional p-Kirchhoff-type elliptic system, Appl. Anal. 100 (2021), no. 9, 1871-1888. · Zbl 1472.35158
[9] P. W. Bates, On some nonlocal evolution equations arising in materials science, Nonlinear Dyn. Evol. Equ. 48 (2006), 13-52. · Zbl 1101.35073
[10] P. Biler, G. Karch, and W. A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, In: Annales de laInstitut Henri Poincaré C, Analyse non linéaire, Elsevier, Masson 2001, 613-637. · Zbl 0991.35009
[11] K. J. Brown and T. F. Wu, A fibering map approach to a semilinear elliptic boundary value problem, Electronic J. Differ. Equ. 2007 (2007), no. 69, 1-9. · Zbl 1133.35337
[12] K. Brown and Y. Zhang, The Nehari manifold for a semilinear elliptic equation with a sign-changing weight function, J. Differ. Equ. 193 (2003), no. 2, 481-499. · Zbl 1074.35032
[13] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ. 32 (2007), no. 8, 1245-1260. · Zbl 1143.26002
[14] F. Charro, E. Colorado, and I. Peral, Multiplicity of solutions to uniformly elliptic fully nonlinear equations with concave-convex hand side, J. Differ. Equ. 246 (2009), no. 9, 4221-4248. · Zbl 1171.35049
[15] W. Chen, Existence of solutions for fractional p-Kirchhoff-type equations with a generalized Choquard nonlinearity, Topol. Methods Nonlinear Anal. 54 (2019), no. 2, 773-791. · Zbl 1437.35288
[16] W. Craig and D. P. Nichols, Traveling two and three-dimensional capillary gravity water waves, SIAM J. Math. Anal. 32 (2000), no. 2, 323-359. · Zbl 0976.35049
[17] W. Craig, U. Schanz, and C. Sulem, The modulational regime of three-dimensional water waves and the Davey-Stewartson system, Ann. Inst. Henri Poincare (C) Anal. Non Lineaire, vol. 14, Elsevier, Masson, 1997, pp. 615-667. · Zbl 0892.76008
[18] E. DiNezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5, 521-573. · Zbl 1252.46023
[19] P. Drábek and S. I. Pohozaev, Positive solutions for the p-Laplacian: Application of the fibrering method, Proc. Roy. Soc. Edinb. A Math. 127 (1997), no. 4, 703-726. · Zbl 0880.35045
[20] G. M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), no. 2, 706-713. · Zbl 1307.35110
[21] A. Fiscella, P. Pucci, and B. Zhang, p-fractional Hardy-Schödinger-Kirchhoff systems with critical nonlinearities, Adv. Nonlinear Anal. 8 (2019), no. 1, 1111-1131. · Zbl 1414.35258
[22] A. Fiscella and E. Valdinoci, A critical Kirchhoff-type problem involving a nonlocal operator, Nonlinear Anal. Theory Methods Appl. 94 (2014), 156-170. · Zbl 1283.35156
[23] A. Ghanmi, Multiplicity of nontrivial solutions of a class of fractional p-Laplacian problem, Z. fur Anal. ihre Anwend. 34 (2015), no. 3, 309-319. · Zbl 1322.35157
[24] A. Ghanmi and K. Saoudi, The Nehari manifold for a singular elliptic equation involving the fractional Laplace operator, Fract. Differ. Calc. 6 (2016), no. 2, 201-217. · Zbl 1438.35428
[25] X. He and W. Zou, Ground states for nonlinear Kirchhoff equations with critical growth, Ann. Mat. Pura Appl. 193 (2014), no. 2, 473-500. · Zbl 1300.35016
[26] Y. He, G. Li, and S. Peng, Concentrating bound states for Kirchhoff-type problems in R3 involving critical Sobolev exponents, Adv. Nonlinear Stud. 14 (2014), no. 2, 483-510. · Zbl 1305.35033
[27] S. Liang, D. D. Repovš, and B. Zhang, On the fractional Schrödinger-Kirchhoff equations with electromagnetic fields and critical nonlinearity, Comput. Math. Appl. 75 (2018), no. 5, 1778-1794. · Zbl 1409.78002
[28] S. Liang and S. Shi, Soliton solutions to Kirchhoff-type problems involving the critical growth in Rn, Nonlinear Anal. Theory Methods Appl. 81 (2013), 31-41. · Zbl 1266.35066
[29] J. Liu, J. F. Liao, and C. L. Tang, Positive solutions for Kirchhoff-type equations with critical exponent in Rn, J. Math. Anal. Appl. 429 (2015), no. 2, 1153-1172. · Zbl 1319.35021
[30] X. Mingqi, V. D. Rǎdulescu, and B. Zhang, Combined effects for fractional Schrödinger-Kirchhoff systems with critical nonlinearities, ESAIM- Control Optim. Calc. Var. 24 (2018), no. 3, 1249-1273. · Zbl 1453.35184
[31] G. Molica Bisci, V. D. Rǎdulescu, and R. Servadei, Variational Methods for Nonlocal Fractional Problems, Vol. 162, Cambridge University Press, 2016, pp. 1-400, ISBN: 9781107111943, Foreword by J. Mawhin. · Zbl 1356.49003
[32] G. Molica Bisci and D. D. Repovš, On doubly nonlocal fractional elliptic equations, Rend. Lincet-Mat. Appl. 26 (2015), no. 2, 161-176. · Zbl 1329.49018
[33] A. Ourraoui, On a p-Kirchhoff problem involving a critical nonlinearity, C. R. Math. 352 (2014), no. 4, 295-298. · Zbl 1298.35096
[34] N. S. Papageorgiou, V. D. Rǎdulescu, and D. D. Repovš, Nonlinear Analysis - Theory and Methods. Springer Monographs in Mathematics, Springer, Cham, 2019. · Zbl 1414.46003
[35] P. Pucci, M. Xiang, and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff-type equations involving the fractional p-Laplacian in V, Calc. Var. Partial Differ. Equ. 54 (2015), no. 3, 2785-2806. · Zbl 1329.35338
[36] K. Saoudi, A. Ghanmi, and S. Horrigue, Multiplicity of solutions for elliptic equations involving fractional operator and sign-changing nonlinearity, J. Pseudo-Differ. Oper. Appl. 11 (2020), no. 4, 1743-1756. · Zbl 1454.35066
[37] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc. 367 (2015), no. 1, 67-102. · Zbl 1323.35202
[38] R. Servadei and E. Valdinoci, Fractional Laplacian equations with critical Sobolev exponent, Rev. Mat. Complut. 28 (2015), no. 3, 655-676. · Zbl 1338.35481
[39] Y. Sire and E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal. 256 (2009), no. 6, 1842-1864. · Zbl 1163.35019
[40] F. Wang and M. Xiang, Multiplicity of solutions to a nonlocal Choquard equation involving fractional magnetic operators and critical exponent, Electron. J. Differ. Equ. 2016 (2016), no. 306, 1-11. · Zbl 1357.35290
[41] M. Willem, Minimax Theorems, vol. 24, Springer Science and Business Media, Berlin, Germany, 1997.
[42] M. Xiang and B. Zhang, A critical fractional p-Kirchhoff-type problem involving discontinuous nonlinearity, Discrete Contin. Dyn. Syst. S, 12 (2019), no. 2, 413-433. · Zbl 1411.35277
[43] M. Xiang, B. Zhang, and V. R. Rǎdulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional p-Laplacian, Nonlinearity 29 (2016), no. 10, 3186-3205. · Zbl 1349.35413
[44] M. Xiang, B. Zhang, and V. R. Rǎdulescu, Superlinear Schrödinger-Kirchhoff-type problems involving the fractional p-Laplacian and critical exponent, Adv. Nonlinear Anal. 9 (2020), no. 1, 690-709. · Zbl 1427.35340
[45] M. Xiang, B. Zhang, and X. Zhang, A nonhomogeneous fractional p-Kirchhoff-type problem involving critical exponent in Rn, Adv. Nonlinear Stud. 17 (2017), no. 3, 611-640. · Zbl 1372.35348
[46] L. Yang and T. An, Infinitely many solutions for fractional p-Kirchhoff equations, Mediterr. J. Math. 15 (2018), 1-13. · Zbl 1393.35282
[47] H. Yin, Existence results for classes of quasilinear elliptic systems with sign-changing weight, Int. J. Nonlinear Sci. 10 (2010), no. 1, 53-60. · Zbl 1222.35091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.