×

Extremal primes for elliptic curves without complex multiplication. (English) Zbl 1478.11083

Summary: Fix an elliptic curve \(E\) over \(\mathbb{Q} \). An extremal prime for \(E\) is a prime \(p\) of good reduction such that the number of rational points on \(E\) modulo \(p\) is maximal or minimal in relation to the Hasse bound, i.e., \( a_p(E) = \pm \left [ 2 \sqrt{p} \right ]\). Assuming that all the symmetric power \(L\)-functions associated to \(E\) have analytic continuation for all \(s \in \mathbb{C}\) and satisfy the expected functional equation and the Generalized Riemann Hypothesis, we provide upper bounds for the number of extremal primes when \(E\) is a curve without complex multiplication. In order to obtain this bound, we use explicit equidistribution for the Sato-Tate measure as in the work of J. Rouse and J. Thorner [Trans. Am. Math. Soc. 369, No. 5, 3575–3604 (2017; Zbl 1429.11086)], and refine certain intermediate estimates taking advantage of the fact that extremal primes are less probable than primes where \(a_p(E)\) is fixed because of the Sato-Tate distribution.

MSC:

11G05 Elliptic curves over global fields
11N05 Distribution of primes

Citations:

Zbl 1429.11086

References:

[1] Agwu, Anthony; Harris, Phillip; James, Kevin; Kannan, Siddarth; Li, Huixi, Frobenius distributions in short intervals for CM elliptic curves, J. Number Theory, 188, 263-280 (2018) · Zbl 1411.11052 · doi:10.1016/j.jnt.2018.01.007
[2] Bucur, Alina; Kedlaya, Kiran S., An application of the effective Sato-Tate conjecture. Frobenius distributions: Lang-Trotter and Sato-Tate conjectures, Contemp. Math. 663, 45-56 (2016), Amer. Math. Soc., Providence, RI · Zbl 1417.11103 · doi:10.1090/conm/663/13349
[3] Clozel, Laurent; Harris, Michael; Taylor, Richard, Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations, \textup{with Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vign\'{e}ras}, Publ. Math. Inst. Hautes \'{E}tudes Sci., 108, 1-181 (2008) · Zbl 1169.11020 · doi:10.1007/s10240-008-0016-1
[4] Deuring, Max, Die Typen der Multiplikatorenringe elliptischer Funktionenk\"{o}rper, Abh. Math. Sem. Hansischen Univ., 14, 197-272 (1941) · JFM 67.0107.01 · doi:10.1007/BF02940746
[5] Giberson, Luke M., Average Frobenius Distributions for Elliptic Curves: Extremal Primes and Koblitz’s Conjecture, 83 pp., ProQuest LLC, Ann Arbor, MI
[6] Giberson, Luke; James, Kevin, An average asymptotic for the number of extremal primes of elliptic curves, Acta Arith., 183, 2, 145-165 (2018) · Zbl 1473.11122 · doi:10.4064/aa170406-30-1
[7] Harris, Michael; Shepherd-Barron, Nick; Taylor, Richard, A family of Calabi-Yau varieties and potential automorphy, Ann. of Math. (2), 171, 2, 779-813 (2010) · Zbl 1263.11061 · doi:10.4007/annals.2010.171.779
[8] James, Kevin; Pollack, Paul, Extremal primes for elliptic curves with complex multiplication, J. Number Theory, 172, 383-391 (2017) · Zbl 1419.11091 · doi:10.1016/j.jnt.2016.09.033
[9] James, Kevin; Tran, Brandon; Trinh, Minh-Tam; Wertheimer, Phil; Zantout, Dania, Extremal primes for elliptic curves, J. Number Theory, 164, 282-298 (2016) · Zbl 1416.11081 · doi:10.1016/j.jnt.2016.01.009
[10] Lang, Serge; Trotter, Hale, Frobenius distributions in \(\operatorname{GL}_2 \)-extensions, Distribution of Frobenius automorphisms in \(\operatorname{GL}_2 \)-extensions of the rational numbers, iii+274 pp. (1976), Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York · Zbl 0329.12015
[11] Martin, Phil; Watkins, Mark, Symmetric powers of elliptic curve \(L\)-functions. Algorithmic number theory, Lecture Notes in Comput. Sci. 4076, 377-392 (2006), Springer, Berlin · Zbl 1143.11332 · doi:10.1007/11792086\_27
[12] Montgomery, Hugh L., Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS Regional Conference Series in Mathematics 84, xiv+220 pp. (1994), Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI · Zbl 0814.11001 · doi:10.1090/cbms/084
[13] Murty, V. Kumar, Explicit formulae and the Lang-Trotter conjecture, Number theory (Winnipeg, Man., 1983), Rocky Mountain J. Math., 15, 2, 535-551 (1985) · Zbl 0587.14009 · doi:10.1216/RMJ-1985-15-2-535
[14] Rouse, Jeremy, Atkin-Serre type conjectures for automorphic representations on \(\operatorname{GL}(2)\), Math. Res. Lett., 14, 2, 189-204 (2007) · Zbl 1175.11026 · doi:10.4310/MRL.2007.v14.n2.a3
[15] Rouse, Jeremy; Thorner, Jesse, The explicit Sato-Tate conjecture and densities pertaining to Lehmer-type questions, Trans. Amer. Math. Soc., 369, 5, 3575-3604 (2017) · Zbl 1429.11086 · doi:10.1090/tran/6793
[16] Taylor, Richard, Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. II, Publ. Math. Inst. Hautes \'{E}tudes Sci., 108, 183-239 (2008) · Zbl 1169.11021 · doi:10.1007/s10240-008-0015-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.