×

Almost all primes satisfy the Atkin-Serre conjecture and are not extremal. (English) Zbl 1482.11064

Summary: Let \(f(z)=\sum_{n=1}^{\infty} a_f(n)e^{2\pi inz}\) be a non-CM holomorphic cuspidal newform of trivial nebentypus and even integral weight \(k\geq 2\). Deligne’s proof of the Weil conjectures shows that \(|a_f(p)|\le 2p^{\frac{k-1}{2}}\) for all primes \(p\). We prove for 100% of primes \(p\) that \(2p^{\frac{k-1}{2}}{\log \log p}/{\sqrt{\log p}}<|a_f(p)|<\lfloor 2p^{\frac{k-1}{2}}\rfloor\). Our proof gives an effective upper bound for the size of the exceptional set. The lower bound shows that the Atkin-Serre conjecture is satisfied for 100% of primes, and the upper bound shows that \(|a_f(p)|\) is as large as possible (i.e., \(p\) is extremal for \(f)\) for 0% of primes. Our proofs use the effective form of the Sato-Tate conjecture proved by the second author, which relies on the recent proof of the automorphy of the symmetric powers of \(f\) due to Newton and Thorne.

MSC:

11F11 Holomorphic modular forms of integral weight
11F30 Fourier coefficients of automorphic forms
11N37 Asymptotic results on arithmetic functions

References:

[1] Barnet-Lamb, T.; Geraghty, D.; Harris, M.; Taylor, R., A family of Calabi-Yau varieties and potential automorphy II, Publ. Res. Inst. Math. Sci., 47, 1, 29-98 (2011) · Zbl 1264.11044 · doi:10.2977/PRIMS/31
[2] David, C.; Gafni, A.; Malik, A.; Prabhu, N.; Turnage-Butterbaugh, CL, Extremal primes for elliptic curves without complex multiplication, Proc. Am. Math. Soc., 148, 3, 929-943 (2020) · Zbl 1478.11083 · doi:10.1090/proc/14748
[3] Elkies, ND, The existence of infinitely many supersingular primes for every elliptic curve over \({ Q}\), Invent. Math., 89, 3, 561-567 (1987) · Zbl 0631.14024 · doi:10.1007/BF01388985
[4] James, K.; Tran, B.; Trinh, M-T; Wertheimer, P.; Zantout, D., Extremal primes for elliptic curves, J. Number Theory, 164, 282-298 (2016) · Zbl 1416.11081 · doi:10.1016/j.jnt.2016.01.009
[5] Murty, MR; Murty, VK; Saradha, N., Modular forms and the Chebotarev density theorem, Am. J. Math., 110, 2, 253-281 (1988) · Zbl 0644.10018 · doi:10.2307/2374502
[6] Murty, V.K.: Modular forms and the Chebotarev density theorem. II. In: Analytic Number Theory (Kyoto, 1996). London Math. Soc. Lecture Note Series, vol. 247, pp. 287-308. Cambridge Univ. Press, Cambridge (1997) · Zbl 0988.11018
[7] Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms. arXiv:1912.11261 (2019)
[8] Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms, II. arXiv:2009.07180 (2020)
[9] Ono, K.: The web of modularity: arithmetic of the coefficients of modular forms and \(q\)-series, vol. 102. In: CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC. American Mathematical Society, Providence, RI (2004) · Zbl 1119.11026
[10] Rouse, J., Atkin-Serre type conjectures for automorphic representations on \({\rm GL}(2)\), Math. Res. Lett., 14, 2, 189-204 (2007) · Zbl 1175.11026 · doi:10.4310/MRL.2007.v14.n2.a3
[11] Serre, J-P, Divisibilité de certaines fonctions arithmétiques, Enseign. Math. (2), 3-4, 22227-22260 (1976) · Zbl 0355.10021
[12] Serre, J.-P.: Abelian \(l\)-adic representations and elliptic curves, vol. 7 of Research Notes in Mathematics. A K Peters, Ltd., Wellesley, MA, (1998) (With the collaboration of Willem Kuyk and John Labute, Revised reprint of the 1968 original) · Zbl 0902.14016
[13] Thorner, J.: Effective forms of the Sato-Tate conjecture. Res. Math. Sci. 8(1): Paper No. 4, 21 (2021) · Zbl 1465.11140
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.