×

Effective Sato-Tate conjecture for abelian varieties and applications. (English) Zbl 07855095

Let \(A\) be an abelian variety defined over a number field \(k\) of dimension \(g\ge 1\), and let \(N\) be the absolute value of the conductor of \(A\). For a fixed rational prime \(\ell\), there is a well-known Galois representation on the rational \(\ell\)-adic Tate module of \(A\), and given a nonzero prime ideal \(\mathfrak p\) of the ring of integers of \(k\) not dividing \(\ell N\), the trace of the Frobenius map at \(\mathfrak p\) is denoted by \(a_{\mathfrak p}\). The absolute value of the norm of \(\mathfrak p\) is denoted by \(\mathrm{Nm}(\mathfrak p)\), and \(\overline a_{\mathfrak p}:=a_{\mathfrak p}/\sqrt{\mathrm{Nm}(\mathfrak p)}\). By Hasse-Weil bound, the normalized trace is contained in \([-2g, 2g]\).
Attached to \(A\) is a compact real Lie subgroup \(\mathrm{ST}(A)\) of the unitary symplectic group \(\mathrm{USp}(2g)\), called the Sato-Tate group of \(A\), and the Sato-Tate conjecture states that \[ \sum_{\mathrm{Nm}(\mathfrak p)\le x} \delta_I( \overline a_{\mathfrak p}) \sim \mu(I) \mathrm{Li}(x) \] where \(I\) is a nonzero subinterval of \([-2g, 2g]\), \(\delta_I\) is the characteristic function on \(I\), \(\mu\) is the pushforward measure on \([-2g, 2g]\) via the trace map of the normalized Haar meausure of \(\mathrm{ST}(A)\), and \(\mathrm{Li}(x):=\int_2^x dt/\log t\). Let \(\mathfrak g\) be the complexified Lie algebra of \(\mathrm{ST}(A)\), which can be written as \(\mathfrak s \times \mathfrak a\) where \(\mathfrak s\) is semi-simple and \(\mathfrak a\) is abelian. Let \(\epsilon_{\mathfrak g}:= \frac1{2(q+\varphi)}\) where \(q\) is the rank of \(\mathfrak g\) and \(\varphi\) is the size of the positive roots of \(\mathfrak s\).
The authors of the paper under review prove that if \(\mathrm{ST}(A)\) is connected, and if we assume the Mumford-Tate conjecture and the generalized Riemann hypothesis for \(L(\chi,s)\) for every irreducible character \(\chi\) of \(\mathrm{ST}(A)\), then \[ \sum_{\mathrm{Nm}(\mathfrak p)\le x} \delta_I( \overline a_{\mathfrak p}) = \mu(I) \mathrm{Li}(x) + O\ \frac{x^{1-\epsilon_{\mathfrak g}} \log(Nx)^{2\epsilon_{\mathfrak g}} } { \log(Nx)^{1-4\epsilon_{\mathfrak g}} } \] where the sum runs over primes not dividing \(N\). The authors also note that the implied constant of \(O\)-notation depends on \(k\) and \(g\) for \(x\ge x_0\) not on \(A\), but \(x_0\) depends on \(\mathfrak g\). This result was proved for elliptic curves with complex multiplication in [V. K. Murty, Rocky Mt. J. Math. 15, 535–551 (1985; Zbl 0587.14009)]. The authors’ theorem can be obtained by using an estimate of [V. K. Murty, Rocky Mt. J. Math. 15, 535–551 (1985; Zbl 0587.14009)], as presented in [A. Bucur and K. S. Kedlaya, Contemp. Math. 663, 45–56 (2016; Zbl 1417.11103)], on truncated sums of an irreducible character over the prime ideals of \(k\), and they use the Mumford-Tate conjecture to make the implied constant of \(O\)-notation independent of \(A\).

MSC:

11G10 Abelian varieties of dimension \(> 1\)
11G05 Elliptic curves over global fields
11R44 Distribution of prime ideals

References:

[1] Banaszak, G., Kedlaya, K. S.: An algebraic Sato-Tate group and Sato-Tate conjecture. Indi-ana Univ. Math. J. 64, 245-274 (2015) Zbl 1392.11041 MR 3320526 · Zbl 1392.11041 · doi:10.1512/iumj.2015.64.5438
[2] Bourbaki, N.: Lie groups and Lie algebras: Chapters 7-9. Elements of Mathematics (Berlin), Springer, Berlin (2005) Zbl 1139.17002 MR 2109105 · Zbl 1139.17002
[3] Brumer, A., Kramer, K.: The conductor of an abelian variety. Compos. Math. 92, 227-248 (1994) Zbl 0818.14016 MR 1283229 · Zbl 0818.14016
[4] Bucur, A., Kedlaya, K. S.: An application of the effective Sato-Tate conjecture. In: Frobe-nius distributions: Lang-Trotter Sato-Tate conjectures, Contemp. Math. 663, American Mathematical Society, Providence, RI, 45-56 (2016) Zbl 1417.11103 MR 3502938 · Zbl 1417.11103 · doi:10.1090/conm/663/13349
[5] Cantoral-Farfán, V., Commelin, J.: The Mumford-Tate conjecture implies the algebraic Sato-Tate conjecture of Banaszak and Kedlaya. Indiana Univ. Math. J. 71, 2595-2603 (2022) Zbl 1506.14094 MR 4530050 · Zbl 1506.14094 · doi:10.1512/iumj.2022.71.9309
[6] Chen, E., Park, P. S., Swaminathan, A. A.: Elliptic curve variants of the least quadratic non-residue problem and Linnik’s theorem. Int. J. Number Theory 14, 255-288 (2018) Zbl 1428.11106 MR 3726253 · Zbl 1428.11106 · doi:10.1142/S1793042118500161
[7] Chen, H., Jones, N., Serban, V.: The Lang-Trotter conjecture for products of non-CM elliptic curves. Ramanujan J. 59, 379-436 (2022) Zbl 1517.11058 MR 4480293 · Zbl 1517.11058 · doi:10.1007/s11139-021-00543-3
[8] Cojocaru, A. C., Wang, T.: Bounds for the distribution of the Frobenius traces associated to products of non-CM elliptic curves. Canad. J. Math. 75, 687-712 (2023) MR 4586829 · Zbl 1525.11062 · doi:10.4153/S0008414X22000086
[9] Cojocaru, A. C., Wang, T.: Bounds for the distribution of the Frobenius traces associated to a generic abelian variety. arXiv:2207.02913v1 (2022)
[10] Deligne, P., Milne, J. S., Ogus, A., Shih, K.-y.: Hodge cycles, motives, and Shimura varieties. Lecture Notes in Math. 900, Springer, Berlin (1982) Zbl 0465.00010 MR 0654325 · Zbl 0465.00010
[11] Duke, W.: Some problems in multidimensional analytic number theory. Acta Arith. 52, 203-228 (1989) Zbl 0631.12008 MR 1031335 · Zbl 0631.12008 · doi:10.4064/aa-52-3-203-228
[12] Fité, F., Kedlaya, K. S., Rotger, V., Sutherland, A. V.: Sato-Tate distributions and Galois endomorphism modules in genus 2. Compos. Math. 148, 1390-1442 (2012) Zbl 1269.11094 MR 2982436 · Zbl 1269.11094 · doi:10.1112/S0010437X12000279
[13] Fité, F., Kedlaya, K. S., Sutherland, A. V.: Sato-Tate groups of some weight 3 motives. In: Frobenius distributions: Lang-Trotter and Sato-Tate conjectures, Contemp. Math. 663, Amer-ican Mathematical Society, Providence, RI, 57-101 (2016) Zbl 1411.11089 MR 3502939 · Zbl 1411.11089 · doi:10.1090/conm/663/13350
[14] Fulton, W., Harris, J.: Representation theory. Grad. Texts in Math. 129, Springer, New York (1991) Zbl 0744.22001 MR 1153249 · Zbl 0744.22001 · doi:10.1007/978-1-4612-0979-9
[15] Ghitza, A.: Distinguishing Hecke eigenforms. Int. J. Number Theory 7, 1247-1253 (2011) Zbl 1253.11052 MR 2825970 · Zbl 1253.11052 · doi:10.1142/S1793042111004708
[16] Ghitza, A., Sayer, R.: Hecke eigenvalues of Siegel modular forms of “different weights”. J. Number Theory 143, 125-141 (2014) Zbl 1302.11028 MR 3227338 · Zbl 1302.11028 · doi:10.1016/j.jnt.2014.03.009
[17] Goldfeld, D., Hoffstein, J.: On the number of Fourier coefficients that determine a modular form. In: A tribute to Emil Grosswald: number theory and related analysis, Contemp. Math. 143, American Mathematical Society, Providence, RI, 385-393 (1993) Zbl 0805.11040 MR 1210527 · Zbl 0805.11040 · doi:10.1090/conm/143/01006
[18] Grothendieck, A.: Modèles de Néron et monodromie (with an appendix by M. Raynaud). In: Groupes de monodromie en géometrie algébrique, SGA 7, Exposé IX, Lecture Notes in Math. 288, Springer, Berlin, 313-523 (1970) Zbl 0248.14006 · doi:10.1007/bfb0068694
[19] Gupta, R. K.: Characters and the q-analog of weight multiplicity. J. London Math. Soc. (2) 36, 68-76 (1987) Zbl 0649.17009 MR 0897675 · Zbl 0649.17009 · doi:10.1112/jlms/s2-36.1.68
[20] Hecke, E.: Eine neue Art von Zetafunktionen und ihre Beziehungen zur Verteilung der Primzahlen. Math. Z. 6, 11-51 (1920) Zbl 47.0152.01 MR 1544392 · JFM 47.0152.01 · doi:10.1007/BF01202991
[21] James, K., Pollack, P.: Extremal primes for elliptic curves with complex multiplication. J. Number Theory 172, 383-391 (2017); see also Errata Zbl 1419.11091 MR 3573159 · Zbl 1419.11091 · doi:10.1016/j.jnt.2016.09.033
[22] James, K., Tran, B., Trinh, M.-T., Wertheimer, P., Zantout, D.: Extremal primes for elliptic curves. J. Number Theory 164, 282-298 (2016) Zbl 1416.11081 MR 3474389 · Zbl 1416.11081 · doi:10.1016/j.jnt.2016.01.009
[23] Maknys, M.: On the distance between consecutive prime ideal numbers in sectors. Acta Math. Hungar. 42, 131-138 (1983) Zbl 0525.10026 MR 0716559 · Zbl 0525.10026 · doi:10.1007/BF01960557
[24] Murty, M. R.: Congruences between modular forms. In: Analytic number theory (Kyoto, 1996), London Math. Soc. Lecture Note Ser. 247, Cambridge University Press, Cambridge, 309-320 (1997) Zbl 0910.11018 MR 1694998 · Zbl 0910.11018 · doi:10.1017/CBO9780511666179.020
[25] Murty, V. K.: Explicit formulae and the Lang-Trotter conjecture. Rocky Mountain J. Math. 15, 535-551 (1985) Zbl 0587.14009 MR 0823264 · Zbl 0587.14009 · doi:10.1216/RMJ-1985-15-2-535
[26] Sengupta, J.: Distinguishing Hecke eigenvalues of primitive cusp forms. Acta Arith. 114, 23-34 (2004) Zbl 1097.11020 MR 2067870 · Zbl 1097.11020 · doi:10.4064/aa114-1-2
[27] Serre, J.-P.: Facteurs locaux des fonctions zêta des varietés algébriques (définitions et conjec-tures). In: Séminaire Delange-Pisot-Poitou, 11e année: 1969/70, Théorie des nombres, Fasc. 2, exp. 19, 15 pp., Secrétariat Math., Paris (1970) Zbl 0214.48403 MR 3618526 · Zbl 0214.48403
[28] Serre, J.-P.: Linear representations of finite groups. Grad. Texts in Math. 42, Springer, New York (1977) Zbl 0355.20006 MR 0450380 · Zbl 0355.20006 · doi:10.1007/978-1-4684-9458-7
[29] Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. 54, 323-401 (1981) Zbl 0496.12011 MR 0644559 · Zbl 0496.12011 · doi:10.1007/BF02698692
[30] Serre, J.-P.: Complex semisimple Lie algebras. Springer, New York (1987) Zbl 0628.17003 MR 0914496 · Zbl 0628.17003 · doi:10.1007/978-1-4757-3910-7
[31] Serre, J.-P.: Propriétés conjecturales des groupes de Galois motiviques et des représentations l-adiques. In: Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, American Mathe-matical Society, Providence, RI, 377-400 (1994) Zbl 0812.14002 MR 1265537 · Zbl 0812.14002 · doi:10.1090/pspum/055.1/1265537
[32] Serre, J.-P.: Lectures on N X .p/.
[33] Chapman & Hall/CRC Research Notes in Mathematics 11, CRC Press, Boca Raton, FL (2012) Zbl 1238.11001 MR 2920749
[34] Serre, J.-P. (ed.): Rational points on curves over finite fields. Doc. Math. (Paris) 18, Société Mathématique de France, Paris (2020) Zbl 1475.11002 MR 4242817 · Zbl 1475.11002
[35] Vinogradov, I. M.: The method of trigonometrical sums in the theory of numbers. Dover Publ., Mineola, NY (2004) Zbl 1093.11001 MR 2104806 · Zbl 1093.11001
[36] Zarzycki, P.: Distribution of primes of imaginary quadratic fields in sectors. J. Number Theory 37, 152-160 (1991) Zbl 0717.11051 MR 1092601 · Zbl 0717.11051 · doi:10.1016/S0022-314X(05)80032-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.