×

Bernstein polynomials for solving fractional heat- and wave-like equations. (English) Zbl 1312.65168

Summary: In this paper, a novel numerical analysis is introduced and performed to obtain the numerical solution of the fractional heat- and wave-like equations. A general formulation for the Bernstein fractional derivatives operational matrix is given. In this approach, a truncated Bernstein series together with the Bernstein operational matrix of fractional derivatives are used to reduce the solution of fractional differential problems to the solution of a system of algebraic equations. Numerical examples are considered aiming to demonstrate the validity and applicability of the proposed techniques and to compare with the existing results.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35R11 Fractional partial differential equations
26A33 Fractional derivatives and integrals
41A10 Approximation by polynomials
45K05 Integro-partial differential equations
41A30 Approximation by other special function classes

References:

[1] W.M. Ahmad, R. El-Khazali, Fractional-order dynamical models of love. Chaos Solitons Fractals 33, No 4 (2007), 1367-1375. http://dx.doi.org/10.1016/j.chaos.2006.01.098; · Zbl 1133.91539
[2] M. Alipour, D. Rostamy, D. Baleanu, Solving multi-dimensional FOCPs with inequality constraint by BPs operational matrices. In: J. of Vibration and Control, To appear.; · Zbl 1358.93097
[3] K. Al-Khaled, S. Momani, An approximate solution for a fractional diffusion-wave equation using the decomposition method. Appl. Math. Comput. 165, No 2 (2005), 473-483. http://dx.doi.org/10.1016/j.amc.2004.06.026; · Zbl 1071.65135
[4] L. Debnath, D. Bhatta, Solutions to few linear fractional inhomogeneous partial differential equations in fluid mechanics. Fract. Calc. Appl. Anal. 7, No 2 (2004), 21-36.; · Zbl 1076.35096
[5] A.M.A. El-Sayed, M. Gaber, The Adomian decomposition method for solving partial differential equations of fractal order in finite domains. Phys. Lett. A. 359, No 3 (2006), 175-182. http://dx.doi.org/10.1016/j.physleta.2006.06.024; · Zbl 1236.35003
[6] R.T. Farouki, V.T. Rajan, Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Design. 5, No 1 (1988), 1-26. http://dx.doi.org/10.1016/0167-8396(88)90016-7; · Zbl 0648.65007
[7] R.T. Farouki, Legendre-Bernstein basis transformations. J. Appl. Math. Comput. 119, No 1-2 (2000), 145-160.; · Zbl 0962.65042
[8] H. Jafari, S. Seifi, Homotopy analysis method for solving linear and nonlinear fractional diffusionwave equation. Commun. Nonlinear Sci. Numer. Simul. 14, No 5 (2009), 2006-2012. http://dx.doi.org/10.1016/j.cnsns.2008.05.008; · Zbl 1221.65278
[9] F. Huang, F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation. J. Appl. Math. Comput. 18, No 1-2 (2005), 21-36.;
[10] V. Kiryakova, Generalized Fractional Calculus and Applications. Longman — John Wiley, Harlow — N. York (1994).; · Zbl 0882.26003
[11] T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 1140-1153. http://dx.doi.org/10.1016/j.cnsns.2010.05.027; · Zbl 1221.26002
[12] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010). http://dx.doi.org/10.1142/p614; · Zbl 1210.26004
[13] Y. Molliq, M.S.M. Noorani, I. Hashim, Variational iteration method for fractional heat- and wave-like equations. Nonlinear Analysis: Real World Applications 10, No 3 (2009), 1854-1869. http://dx.doi.org/10.1016/j.nonrwa.2008.02.026; · Zbl 1172.35302
[14] S. Momani, An explicit and numerical solutions of the fractional KdV equation. Math. Comput. Simul. 70, No 2 (2005), 110-118. http://dx.doi.org/10.1016/j.matcom.2005.05.001; · Zbl 1119.65394
[15] S. Momani, Analytic approximate solution for fractional heat-like and wave-like equations with variable coefficients using the decomposition method. Appl. Math. Comput. 165, No 2 (2005), 459-472. http://dx.doi.org/10.1016/j.amc.2004.06.025; · Zbl 1070.65105
[16] S. Momani, Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 54, No 7-8 (2007), 910-919. http://dx.doi.org/10.1016/j.camwa.2006.12.037; · Zbl 1141.65398
[17] Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses, 28, No 1 (2005), 83-102.;
[18] Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusionwave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, No 3 (2011), 418-435; DOI: 10.2478/s13540-011-0026-4; at http://www.springerlink.com/content/1311-0454/14/3/; · Zbl 1273.35300
[19] D. Rostamy, K. Karimi, F. Zabihi, M. Alipour, Numerical solution of electrodynamic flow by using pseudo-spectral collocation method. In: Vietnam Journal of Mathematics.; · Zbl 1301.76080
[20] A. Saadatmandia, M. Dehghan, A new operational matrix for solving fractional-order differential equations. Appl. Math. Comput. 59, No 3 (2010), 1326-1336. http://dx.doi.org/10.1016/j.camwa.2009.07.006; · Zbl 1189.65151
[21] S.A. Yousefi, M. Behroozifar, Operational matrices of Bernstein polynomials and their applications. Inter. J. Syst. Sci. 41, No 6 (2010), 709-716. http://dx.doi.org/10.1080/00207720903154783; · Zbl 1195.65061
[22] P. Zhuang and F. Liu, Implicit diference approximation for the time fractional difusion equation. J. Appl. Math. Comput. 22, No 3 (2006), 87-99. http://dx.doi.org/10.1007/BF02832039; · Zbl 1140.65094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.