×

Stability analysis of the POD reduced order method for solving the bidomain model in cardiac electrophysiology. (English) Zbl 1332.92013

Summary: In this paper we show the numerical stability of the proper orthogonal decomposition (POD) reduced order method used in cardiac electrophysiology applications. The difficulty of proving the stability comes from the fact that we are interested in the bidomain model, which is a system of degenerate parabolic equations coupled to a system of ODEs representing the cell membrane electrical activity. The proof of the stability of this method is based on a priori estimates controlling the gap between the reduced order solution and the Galerkin finite element one. We present some numerical simulations confirming the theoretical results. We also combine the POD method with a time splitting scheme allowing a faster solving of the bidomain problem and show numerical results. Finally, we conduct numerical simulation in 2D illustrating the stability of the POD method in its sensitivity to the ionic model parameters. We also perform 3D simulation using a massively parallel code. We show the computational gain using the POD reduced order model. We also show that this method has a better scalability than the full finite element method.

MSC:

92C30 Physiology (general)
35K20 Initial-boundary value problems for second-order parabolic equations
35B45 A priori estimates in context of PDEs
35K57 Reaction-diffusion equations
35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35B65 Smoothness and regularity of solutions to PDEs
49M27 Decomposition methods

Software:

Chaste

References:

[1] Boulakia, M.; Fernández, M. A.; Gerbeau, J.-F.; Zemzemi, N., A coupled system of PDEs and ODEs arising in electrocardiograms modeling, Appl. Math. Res. eXpr., 2008 (2008) · Zbl 1177.35236
[2] Potse, M.; Dubé, B.; Richer, J.; Vinet, A.; Gulrajani, R. M., A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart, IEEE Trans. Biomed. Eng.,, 53, 12, 2425-2435 (2006)
[3] Vigmond, E. J.; Weber dos Santos, R.; Prassl, A. J.; Deo, M.; Plank, G., Solvers for the cardiac bidomain equations, Progr. Biophys. Molec. Biol., 96, 1-3, 3-18 (2008)
[4] Colli Franzone, P.; Pavarino, L. F., A parallel solver for reaction-diffusion systems in computational electrocardiology, Math. Models Methods Appl. Sci., 14, 06, 883-911 (2004) · Zbl 1068.92024
[5] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electromechanics, Comput. Methods Appl. Mech. Eng., 253, 323-336 (2013) · Zbl 1297.74077
[6] Mirams, G. R.; Arthurs, C. J.; Bernabeu, M. O.; Bordas, R.; Cooper, J.; Corrias, A.; Davit, Y.; Dunn, S.-J.; Fletcher, A. G.; Harvey, D. G., Chaste: an open source c++ library for computational physiology and biology, PLoS Comput. Biol., 9, 3, e1002970 (2013)
[7] Boulakia, M.; Fernández, M. A.; Gerbeau, J.-F.; Zemzemi, N., Numerical simulation of electrocardiograms, Modeling of Physiological Flows, 77-106 (2012), Springer
[8] Vigmond, E. J.; Aguel, F.; Trayanova, N., Computational techniques for solving the bidomain equations in three dimensions, IEEE Trans. Biomed. Eng.,, 49, 11, 1260-1269 (2002)
[9] Henriquez, C. S., Simulating the electrical behavior of cardiac tissue using the bidomain model., Critical Rev. Biomed. Eng., 21, 1, 1-77 (1992)
[10] Trew, M. L.; Smaill, B. H.; Bullivant, D. P.; Hunter, P. J.; Pullan, A. J., A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes, Math. Biosci., 198, 2, 169-189 (2005) · Zbl 1093.65086
[11] Coudiere, Y.; Pierre, C.; Rousseau, O.; Turpault, R., A 2d/3d discrete duality finite volume scheme. application to ECG simulation, Int. J. Finite Vol., 6, 1, 1-24 (2009) · Zbl 1490.65238
[12] Kandel, S. M., The electrical bidomain model: A review, Sch. Acad. J. Biosci., 3, 7, 633-639 (2015)
[13] Boulakia, M.; Schenone, E.; Gerbeau, J. F., Reduced-order modeling for cardiac electrophysiology, application to parameter identification, Int. J. Numer. Methods Biomed. Eng., 28, 6-7 (2012)
[14] J. L. Lumley, P. H.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge Monographs on Mechanics · Zbl 0890.76001
[15] R. Guyonnet, N. A.; Lima, R., Spatio-temporal analysis of complex signals: theory and applications, J. Statis. Phys, 64, 3/4, 683-739 (1991) · Zbl 0943.37510
[16] Delville, J.; Ukeiley, L.; Cordier, L.; Bonnet, J.; Glauser, M., Examination of large-scale structures in a turbulent plane mixing layer. part 1. Proper orthogonal decomposition, J. Fluid Mech., 391, 91-122 (1999) · Zbl 0995.76030
[17] Volkwein, S., Model Reduction Using Proper Orthogonal Decomposition, Lecture Notes (2011), Institute of Mathematics and Scientific Computing, University of Graz
[18] Henri, T.; Yvon, J.-P., Convergence estimates of POD-Galerkin methods for parabolic problems, (Cagnol, J.; ZolȨsio, J.-P., System Modeling and Optimization. System Modeling and Optimization, IFIP International Federation for Information Processing, volume 166 (2005), Springer US), 295-306 · Zbl 1088.65576
[19] Kunisch, K.; Volkwein, S., Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SIAM J. Numer. Anal., 40, 2, 492-515 (2002) · Zbl 1075.65118
[20] Chapelle, D.; Gariah, A.; Sainte-Marie, J., Galerkin approximation with proper orthogonal decomposition: new error estimates and illustrative examples, ESAIM: Math. Model. Numer. Anal., 46, 04, 731-757 (2012) · Zbl 1273.65125
[21] Boulakia, M.; Cazeau, S.; Fernández, M. A.; Gerbeau, J.-F.; Zemzemi, N., Mathematical modeling of electrocardiograms: a numerical study, Ann. Biomed. Eng., 38, 3, 1071-1097 (2010)
[22] Tung, L., A Bi-Domain Model for Describing Ischemic Myocardial DC Potentials (1978), Massachusetts Institute of Technology, Ph.D. thesis
[23] Sundnes, J.; Lines, G. T.; Tveito, A., Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells, Math. Biosci., 172, 2, 55-72 (2001) · Zbl 0984.92010
[24] Sundnes, J.; Lines, G. T.; Cai, X.; Nielsen, B. F.; Mardal, K.-A.; Tveito, A., Computing the Electrical Activity in the Heart, vol. 1 (2007), Springer Science & Business Media
[25] Ten Tusscher, K.; Panfilov, A., Cell model for efficient simulation of wave propagation in human ventricular tissue under normal and pathological conditions, Phys. Med. Biol., 51, 23, 6141 (2006)
[26] Mitchell, C. C.; Schaeffer, D. G., A two-current model for the dynamics of cardiac membrane, Bull. Math. Biol., 65, 5, 767-793 (2003) · Zbl 1334.92097
[27] Kunisch, K.; Wagner, M., Optimal control of the bidomain system (iv): Corrected proofs of the stability and regularity theorems, arXiv:1409.6904 (2014)
[28] Bourgault, Y.; Coudiere, Y.; Pierre, C., Existence and uniqueness of the solution for the bidomain model used in cardiac electrophysiology, Nonlinear Anal.: Real World Appl., 10, 1, 458-482 (2009) · Zbl 1154.35370
[29] Nagaiah, C.; Kunisch, K.; Plank, G., On boundary stimulation and optimal boundary control of the bidomain equations, Math Biosci., 245, 2, 206-215 (2013) · Zbl 1308.92013
[30] Kunisch, K.; Marica, A., Well-Posedness for the Mitchell-Scheaffer Model of the Cardiac Membrane, Technical Report SFB-Report No. 2013-018 (2013), Karl-Franzens Universitat Graz: Karl-Franzens Universitat Graz A-8010 Graz, Heinrichstrasse 36, Austria
[31] Zemzemi, N., Étude théorique et numérique de lactivité électrique du cœur: Applications aux électrocardiogrammes (2009), Paris 11, (Ph.D. thesis)
[32] Kerfriden, P.; Gosselet, P.; Adhikari, S.; Bordas, S. P.-A., Bridging proper orthogonal decomposition methods and augmented newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems, Comput. Methods Appl. Mech. Eng., 200, 5, 850-866 (2011) · Zbl 1225.74092
[33] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: a numerical comparison, Comput. Methods Appl. Mech. Eng., 237, 10-26 (2012) · Zbl 1253.76050
[34] Rathinam, M.; Petzold, L. R., A new look at proper orthogonal decomposition, SIAM J. Numer. Anal., 41, 5, 1893-1925 (2003) · Zbl 1053.65106
[35] Lines, G. T.; Grøttum, P.; Tveito, A., Modeling the electrical activity of the heart: a bidomain model of the ventricles embedded in a torso, Comput. Vis. Sci., 5, 4, 195-213 (2003) · Zbl 1024.92006
[36] Austin, T. M.; Trew, M. L.; Pullan, A. J., Solving the cardiac bidomain equations for discontinuous conductivities, IEEE Trans. Biomed. Eng., 53, 7, 1265-1272 (2006)
[37] Fernández, M. A.; Zemzemi, N., Decoupled time-marching schemes in computational cardiac electrophysiology and ECG numerical simulation, Math. Biosci., 226, 1, 58-75 (2010) · Zbl 1193.92024
[38] Niederer, S. A.; Kerfoot, E.; Benson, A. P.; Bernabeu, M. O.; Bernus, O.; Bradley, C.; Cherry, E. M.; Clayton, R.; Fenton, F. H.; Garny, A., Verification of cardiac tissue electrophysiology simulators using an n-version benchmark, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 369, 1954, 4331-4351 (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.