×

A kernel derivative free SPH method. (English) Zbl 1509.76065

Summary: Based on smooth particle hydrodynamics (SPH) method, this paper proposes the concept of kernel function moment and studies its properties, and puts forward the KDF-SPH (Kernel Derivative Free SPH: KDF-SPH) method. The method proposed in this paper is applied to the calculation of derivatives of one-dimensional functions and partial derivatives of two-dimensional functions, and the numerical simulation of one-dimensional burgers equations and two-dimensional burgers equations. At the same time, the convergence of KDF-SPH method and SPH method is analyzed and compared. The errors of the KDF-SPH method with different kernel functions are compared with those of the SPH method. It turns out that the KDF-SPH method has higher accuracy and better convergence than the traditional SPH method, and the new method proposed in this paper needs less computation because it does not need to solve the derivative of the kernel function. And, it is also effective in reducing the error and improving the stability.

MSC:

76M28 Particle methods and lattice-gas methods
76D99 Incompressible viscous fluids

References:

[1] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024 (1977)
[2] Gingold, R.; Monaghan, J. J., Smoothed particle hydrodynamics: Theory and application to nonspherical stars, Mon Not R Astron Soc, 181, 375-389 (1977) · Zbl 0421.76032
[3] Plimpton, S.; Attaway, S.; Hendrickson, B.; Swegle, J.; Vaughan, C.; Gardner, D., Parallel transient dynamics simulations: Algorithms for contact detection and smoothed particle hydrodynamics, J Parallel Distrib Comput, 50, 104-122 (1998) · Zbl 0910.68230
[4] Stowe, David; Kupchella, Ryan; Pan, Hua; Cogar, John, Investigation of S-SPH for hypervelocity impact calculations, Procedia Eng, 103, 585-592 (2015)
[5] Fang, J.; Parriaux, A.; Rentschler, M.; Ancey, C., Improved SPH methods for simulating free surface flows of viscous fluids, Appl Numer Math, 59, 2, 251-271 (2009) · Zbl 1194.76202
[6] Antuono, M.; Colagrossi, A.; Marrone, S.; Molteni, D., Free-surface flows solved by means of SPH schemes with numerical diffusive terms, Comput Phys Comm, 181, 532-549 (2010) · Zbl 1333.76055
[7] Jeong, J. H.; Jhon, M. S.; Halow, J. S.; van Osdol, J., Smoothed particle hydrodynamics: Applications to heat conduction, Comput Phys Comm, 153, 71-84 (2003) · Zbl 1196.82015
[8] Zhang, G. M.; Batra, R. C., Modified smoothed particle hydrodynamics method and its application to transient problems, Comput Mech, 34, 137-146 (2004) · Zbl 1138.74422
[9] Cleary, P. W.; Prakash, M.; Ha, J.; Stokes, N.; Scott, C., Smooth particle hydrodynamics: Status and future potential, Prog Comput Fluid Dyn, 7, 70-90 (2007) · Zbl 1117.76052
[10] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): An overview and recent developments, Arch Comput Methods Eng, 17, 25-76 (2010) · Zbl 1348.76117
[11] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: Some recent improvements and applications, Comput Methods Appl Mech Engrg, 139, 375-408 (1996) · Zbl 0896.73075
[12] Libersky, L. D.; Petschek, A. G., Smooth particle hydrodynamics with strength of materials, Adv Free Lagrange Method, 248, 248-257 (1990)
[13] Chen, J. K.; Beraun, J. E., A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems, Comput Methods Appl Mech Engrg, 190, 225-239 (2000) · Zbl 0967.76077
[14] Zhang, G. M.; Batra, R. C., Symmetric smoothed particle hydrodynamics (SSPH) method and its application to elastic problems, Comput Mech, 43, 321-340 (2009) · Zbl 1162.74510
[15] Huang, C.; Lei, J. M.; Liu, M. B.; Peng, X. Y., A kernel gradient free (KGF) SPH method, Int J Numer Methods Fluids, 78, 691-707 (2015)
[16] Huang, C.; Lei, J. M.; Liu, M. B.; Peng, X. Y., An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows, Internat J Numer Methods Fluids, 81, 6, 377-396 (2016)
[17] Maatouk, K., Third order derivative free SPH iterative method for solving nonlinear systems, Appl Math Comput, 270, 557-566 (2015) · Zbl 1410.65190
[18] Liu, M. B.; Liu, G. R.; Lam, K. Y., A one-dimensional meshfree particle formulation for simulating shock waves, Shock Waves, 13, 3, 201-211 (2003) · Zbl 1063.76079
[19] Khayyer, A.; Gotoh, H.; Shimizu, Y., Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context, J Comput Phys, 332, 236-256 (2017) · Zbl 1378.76094
[20] Francomano, E.; Paliaga, M., Highlighting numerical insights of an efficient SPH method, Appl Math Comput, 339, 899-915 (2018) · Zbl 1428.76154
[21] Imin, R.; Iminjan, A.; Halik, A., A new revised scheme for SPH, Int J Comput Methods, 15, 5, 1-17 (2018) · Zbl 1404.76201
[22] Imin, R.; Wei, Y.; Iminjan, A., New corrective scheme for DF-SPH, Comput Part Mech, 7, 471-478 (2020)
[23] Francomano, E.; Paliaga, M., A normalized iterative smoothed particle hydrodynamics method, Math Comput Simulation, 176, 171-180 (2020) · Zbl 1510.76123
[24] Wang, P. P.; Zhang, A. M.; Meng, Z. F.; Ming, F. R.; Fang, X. L., A new type of WENO scheme in SPH for compressible flows with discontinuities, Comput Methods Appl Mech Engrg, 381 (2021) · Zbl 1506.76122
[25] Fang, L.; Marongiu, J. C.; Leduc, J.; Amicarelli, A.; Caro, J., A high-order SPH method by introducing inverse kernels, Chin J Aeronaut (2017)
[26] Liu, M. B.; Zhang, Z. L.; Feng, D. L., A density-adaptive SPH method with kernel gradient correction for modeling explosive welding, Comput Mech, 60, 513-529 (2017) · Zbl 1386.74107
[27] Rajapriyadharshini, J. R., An improved smoothed particle hydrodynamics approach using new inverse kernel function, J Ocean Eng Sci (2021)
[28] Quinlan, N. J.; Basa, M.; Lastiwka, M., Truncation error in mesh-free particle methods, Internat J Numer Methods Engrg, 66, 13, 2064-2085 (2006) · Zbl 1110.76325
[29] Amicarelli, A.; Marongiu, J. C.; Leboeuf, F., SPH truncation error in estimating a 3D function, Comput & Fluids, 44, 1, 279-296 (2011) · Zbl 1271.76261
[30] Franz, T.; Wendland, H., Convergence of the smoothed particle hydrodynamics method for a specific barotropic fluid flow: Constructive kernel theory, SIAM J Math Anal, 50, 5, 4752-4784 (2018) · Zbl 1434.65157
[31] Franz, T.; Wendland, H., An improved convergence result for the smoothed particle hydrodynamics method, SIAM J Math Anal, 53, 2, 1239-1262 (2021) · Zbl 1466.35294
[32] Kiara, A.; Hendrickson, K.; Yue, D. K.P., SPH for incompressible free-surface flows. part I: Error analysis of the basic assumptions, Comput & Fluids, 86, 611-624 (2013) · Zbl 1290.76123
[33] Violeau, Damien; Fonty, Thomas, Calculating the smoothing error in SPH, Comput & Fluids, 191, Article 104240 pp. (2019) · Zbl 1519.76263
[34] Sprenga, F.; Vacondio, R., An advanced study on discretization-error-based adaptivity in smoothed particle hydrodynamics, Comput & Fluids, 198, Article 104388 pp. (2020) · Zbl 1519.76261
[35] Garoosi, F.; Shakibaeinia, A., Numerical simulation of free-surface flow and convection heat transfer using a modified weakly compressible smoothed particle hydrodynamics (WCSPH) method, Int J Mech Sci, 188, Article 105940 pp. (2020)
[36] Huang, C.; Long, C.; Li, D.; Liu, C., A kernel gradient-free SPH method with iterative particle shifting technology for modeling low-Reynolds flows around airfoils-ScienceDirect, Eng Anal Bound Elem, 106, 571-587 (2019) · Zbl 1464.76139
[37] Huang, C.; Zhao, L.; Niu, J. P., Coupled particle and mesh method in an Euler frame for unsteady flows around the pitching airfoil, Eng Anal Bound Elem, 138, 159-176 (2022)
[38] Liu, M. B.; Liu, G. R., Restoring particle consistency in smoothed particle hydrodynamics, Appl Numer Math, 56, 1, 19-36 (2006) · Zbl 1329.76285
[39] Fatehi, R.; Manzari, M. T., Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Comput Math Appl, 61, 2, 482-498 (2011) · Zbl 1211.76089
[40] Korzilius SP, Schilders WHA, Anthonissen MJH. An Improved Corrective Smoothed Particle Method Approximation for Second-Order Derivatives. In: Proceedings of the 8th international SPHERIC workshop. Trondheim, 2013, p. 38-43.
[41] Francomano, E.; Paliaga, M., The smoothed particle hydrodynamics method via residual iteration-ScienceDirect, Comput Methods Appl Mech Engrg, 352, 237-245 (2019) · Zbl 1441.76088
[42] Quinlan N, Basa M, Lastiwka M. An Analysis of Accuracy in One-Dimensional Smoothed Particle Hydrodynamics. In: AIAA computational fluid dynamics conference. 2005. · Zbl 1064.76087
[43] Lancaster, A. S.H. P., Theory of matrices, Mathematics of Computation, 886 (1969) · Zbl 0186.05301
[44] Liu, G. R.; Liu, M. B., Smoothed particle hydrodynamics: A meshless particle method (2003), World Scientific Publishing: World Scientific Publishing Singapore · Zbl 1046.76001
[45] Yang, X. F.; Peng, S. L.; Liu, M. B., A new kernel function for SPH with applications to free surface flows, Appl Math Model, 38, 15-16, 3822-3833 (2014) · Zbl 1428.76162
[46] Wendland, H., Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv Comput Math, 4, 1, 389-396 (1995) · Zbl 0838.41014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.