×

The well-posedness of a swimming model in the 3-D incompressible fluid governed by the nonstationary Stokes equation. (English) Zbl 1342.76145

Int. J. Appl. Math. Comput. Sci. 23, No. 2, 277-290 (2013); addendum ibid. 23, No. 4, 905-906 (2013).
Summary: We introduce and investigate the well-posedness of a model describing the self-propelled motion of a small abstract swimmer in the 3-D incompressible fluid governed by the nonstationary Stokes equation, typically associated with low Reynolds numbers. It is assumed that the swimmer’s body consists of finitely many subsequently connected parts, identified with the fluid they occupy, linked by rotational and elastic Hooke forces. Models like this are of interest in biological and engineering applications dealing with the study and design of propulsion systems in fluids.

MSC:

76Z10 Biopropulsion in water and in air
76D05 Navier-Stokes equations for incompressible viscous fluids
92D50 Animal behavior

References:

[1] Alouges, F., DeSimone, A. and Lefebvre, A. (2008). Optimal Strokes for low Reynolds number swimmers: An example, Journal of Nonlinear Science 18: 27-302. · Zbl 1146.76062 · doi:10.1007/s00332-007-9013-7
[2] Becker, L.E, Koehler, S.A. and Stone, H.A. (2003). On self-propulsion of micro-machines at low Reynolds number: Purcell’s three-link swimmer, Journal of FluidMechanics 490: 15-35. · Zbl 1063.76690 · doi:10.1017/S0022112003005184
[3] Belter, D. and Skrzypczyński, P (2010). A biologically inspired approach to feasible gait learning for a hexapod robot, InternationalJournal of Applied Mathematics and ComputerScience 20(1): 69-84, DOI: 10.2478/v10006-010-0005-7. · Zbl 1300.93116 · doi:10.2478/v10006-010-0005-7
[4] Childress, S. (1981). Mechanics of Swimming and Flying, Cambridge University Press, Cambridge. · Zbl 0499.76118 · doi:10.1017/CBO9780511569593
[5] Dal Maso, Gi., DeSimone, A. and Morandotti, M. (2011). An existence and uniqueness result for the motion of self-propelled micro-swimmers, SIAM Journal of MathematicalAnalysis 43: 1345-1368. · Zbl 1375.76229
[6] Fukuda, T., Kawamoto, A., Arai, F. and Matsuura, H. (1995). Steering mechanism and swimming experiment of micro mobile robot in water, Proceedings of Micro Electro MechanicalSystems (MEMS’95), Amsterdam, The Netherlands, pp. 300-305.
[7] Fauci, L. and Peskin, C.S. (1988). A computational model of aquatic animal locomotion, Journal of ComputationalPhysics 77: 85-108. · Zbl 0641.76140 · doi:10.1016/0021-9991(88)90158-1
[8] Fauci, L. (1993). Computational modeling of the swimming of biflagellated algal cells, Contemporary Mathematics 141: 91-102. · Zbl 0786.76105
[9] Galdi, G.P. (1999). On the steady self-propelled motion of a body in a viscous incompressible fluid, Archive for RationalMechanics and Analysis 1448: 53-88. · Zbl 0957.76012 · doi:10.1007/s002050050156
[10] Galdi, G.P. (2002). On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, in S. Friedlander and D. Serre , Handbook of MathematicalFluid Mechanics, Elsevier Science, Amsterdam, pp. 653-791. · Zbl 1230.76016
[11] Gray, J. (1932). Study in animal locomotion IV: The propulsive power of the dolphin, Journal of Experimental Biology 10: 192-199.
[12] Gray, J. and Hancock, G.J. (1955). The propulsion of sea-urchin spermatozoa, Journal of Experimental Biology 32: 802.
[13] Guo, S. (2002). Afin type of micro-robot in pipe, Proceedingsof the 2002 International Symposium on Micromechatronicsand Human Science (MHS 2002), Ngoya, Japan, pp. 93-98.
[14] Gurtin, M.E. (1981). An Introduction to Continuum Mechanics, Academic Press, New York, NY. · Zbl 0559.73001
[15] Hawthorne,M.F., Zink, J.I., Skelton, J.M., Bayer,M.J., Liu, Ch., Livshits, E., Baer, R. and Neuhauser, D. (2004). Electrical or photocontrol of rotary motion of a metallacarborane, Science 303: 1849.
[16] Happel, V. and Brenner, H. (1965). Low Reynolds Number Hydrodynamics, Prentice Hall, Upper Saddle River, NJ. · Zbl 0612.76032
[17] Hirose, S. (1993). Biologically Inspired Robots: Snake-likeLocomotors and Manipulators, Oxford University Press, Oxford.
[18] Kanso. E., Marsden, J.E., Rowley, C.W. and Melli-Huber, J. (2005). Locomotion of articulated bodies in a perfect fluid, Journal of Nonlinear Science 15: 255-289. · Zbl 1181.76032 · doi:10.1007/s00332-004-0650-9
[19] Khapalov, A.Y. (1999). Approximate controllability properties of the semilinear heat equation with lumped controls, InternationalJournal of Applied Mathematics and ComputerScience 9(4): 751-765. · Zbl 0951.93007
[20] Khapalov, A.Y. (2005). The well-posedness of a model of an apparatus swimming in the 2-D Stokes fluid, Technical Report 2005-5, Washington State University, Department of Mathematics, http://www.math.wsu.edu/TRS/2005-5.pdf.
[21] Khapalov, A.Y. and Eubanks, S. (2009). The wellposedness of a 2-D swimming model governed in the nonstationary Stokes fluid by multiplicative controls, Applicable Analysis88: 1763-1783, DOI:10.1080/00036810903401222. · Zbl 1221.35298 · doi:10.1080/00036810903401222
[22] Khapalov, A.Y. (2010). Controllability of Partial DifferentialEquations Governed by Multiplicative Controls, Lecture Notes in Mathematics Series, Vol. 1995, Springer-Verlag, Berlin/Heidelberg. · Zbl 1210.93005 · doi:10.1007/978-3-642-12413-6
[23] Khapalov, A.Y. and Trinh, G. (2013). Geometric aspects of transformations of forces acting upon a swimmer in a 3-D incompressible fluid, Discrete and Continuous DynamicalSystems Series A 33: 1513-1544. · Zbl 1277.35278 · doi:10.3934/dcds.2013.33.1513
[24] Khapalov, A.Y. (2013). Micro motions of a swimmer in the 3-D incompressible fluid governed by the nonstationary Stokes equation, [math.AP], (preprint). · Zbl 1287.35057 · doi:10.1137/120876460
[25] Koiller, J., Ehlers, F. and Montgomery, R. (1996). Problems and progress in microswimming, Journal of Nonlinear Science6: 507-541. · Zbl 0867.76099 · doi:10.1007/BF02434055
[26] Ladyzhenskaya, O.A. (1963). The Mathematical Theory of ViscousIncompressible Flow, Cordon and Breach, New York, NY.
[27] Lighthill, M.J. (1975). Mathematics of Biofluid Dynamics, Society for Industrial and Applied Mathematics, Philadelphia, PA.
[28] Mason, R. and Burdick, J.W. (2000). Experiments in carangiform robotic fish locomotion, Proceedings of theIEEE International Conference on Robotics and Automation,San Francisco, CA, USA, pp. 428-435.
[29] McIsaac, K.A. and Ostrowski, J.P. (2000). Motion planning for dynamic eel-like robots, Proceedings of the IEEE InternationalConference on Robotics and Automation, San Francisco,CA, USA, pp. 1695-1700.
[30] Martinez, S. and Cortes, J. (2001). Geometric control of robotic locomotion systems, Proceedings of the 10th Fall Workshopon Geometry and Physics, Miraflores de la Sierra,Spain, Vol. 4, pp. 183-198.
[31] Morgansen, K.A., Duindam, V., Mason, R.J., Burdick, J.W. and Murray, R.M. (2001). Nonlinear control methods for planar carangiform robot fish locomotion, Proceedings ofthe IEEE International Conference on Robotics and Automation,Seoul, Korea, pp. 427-434.
[32] Peskin, C.S. (1977). Numerical analysis of blood flow in the heart, Journal of Computational Physics 25: 220-252. · Zbl 0403.76100 · doi:10.1016/0021-9991(77)90100-0
[33] Peskin, C.S. and McQueen, D.M. (1994). A general method for the computer simulation of biological systems interacting with fluids, SEB Symposium on Biological Fluid Dynamics,Leeds, UK.
[34] San Martin, J., Takashi, T. and Tucsnak, M. (2007). A control theoretic approach to the swimming of microscopic organisms, Quarterly Applied Mathematics 65: 405-424. · Zbl 1135.76058 · doi:10.1090/S0033-569X-07-01045-9
[35] San Martin, J., Scheid, J.-F., Takashi, T. and Tucsnak, M. (2008). An initial and boundary value problem modeling of fish-like swimming, Archive of Rational Mechanics andAnalysis 188: 429-455. · Zbl 1138.76072
[36] Shapere, A. and Wilczeck, F. (1989). Geometry of self-propulsion at low Reynolds number, Journal of FluidMechanics 198: 557-585. · Zbl 0674.76114 · doi:10.1017/S002211208900025X
[37] Sigalotti, M. and Vivalda, J.-C. (2009). Controllability properties of a class of systems modeling swimming microscopic organisms, ESAIM: Control, Optimisationand Calculus of Variations 16: 1053-1076. · Zbl 1210.37013 · doi:10.1051/cocv/2009034
[38] Taylor, G.I. (1951). Analysis of the swimming of microscopic organisms, Proceeding of the Royal Society of London A209: 447-461. · Zbl 0043.40302 · doi:10.1098/rspa.1951.0218
[39] Taylor, G.I. (1952). Analysis of the swimming of long and narrow animals, Proceedings of the Royal Society of LondonA 214(1117): 158-183. · Zbl 0047.43901 · doi:10.1098/rspa.1952.0159
[40] Temam, R. (1984). Navier-Stokes Equations, North-Holland, Amsterdam.
[41] Trintafyllou, M.S., Trintafyllou, G.S. and Yue, D.K.P. (2000). Hydrodynamics of fishlike swimming, Annual Review ofFluid Mechanics 32: 33-53. · Zbl 0988.76102
[42] Tytell, E.D., Hsu, C.-Y, Williams, T.L., Cohen, A.H. and Fauci, L.J. (2010). Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming, Proceedings of the NationalAcademy Sciences, USA 107: 19832-19837.
[43] Wu, T.Y. (1971). Hydrodynamics of swimming fish and cetaceans, Advances in Applied Mathematics 11: 1-63.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.