×

A latent space model for multilayer network data. (English) Zbl 1543.62665

Summary: A Bayesian statistical model to simultaneously characterize two or more social networks defined over a common set of actors is proposed. The key feature of the model is a hierarchical prior distribution that allows the user to represent the entire system jointly, achieving a compromise between dependent and independent networks. Among others things, such a specification provides an easy way to visualize multilayer network data in a low-dimensional Euclidean space, generate a weighted network that reflects the consensus affinity between actors, establish a measure of correlation between networks, assess cognitive judgments that subjects form about the relationships among actors, and perform clustering tasks at different social instances. The model’s capabilities are illustrated using real-world and synthetic datasets, taking into account different types of actors, sizes, and relations.

MSC:

62P25 Applications of statistics to social sciences
62F15 Bayesian inference
62H30 Classification and discrimination; cluster analysis (statistical aspects)
91D30 Social networks; opinion dynamics

References:

[1] Abdollahpouri, A.; Salavati, C.; Arkat, J.; Tab, F. A.; Manbari, Z., A multi-objective model for identifying valuable nodes in complex networks with minimum cost, Clust. Comput., 23, 4, 2719-2733 (2020)
[2] Airoldi, E.; Blei, D.; Fienberg, S.; Xing, E., Mixed membership stochastic blockmodels, (Advances in Neural Information Processing Systems (2009)), 33-40
[3] Aldous, D. J., Exchangeability and related topics, (École d’Été de Probabilités de Saint-Flour XIII—1983 (1985), Springer), 1-198 · Zbl 0562.60042
[4] Aliverti, E.; Russo, M., Stratified stochastic variational inference for high-dimensional network factor model (2020), arXiv preprint
[5] Banerjee, A.; Chandrasekhar, A.; Duflo, E.; Jackson, M., The diffusion of microfinance, Science, 341, 6144 (2013)
[6] Bartz-Beielstein, T.; Branke, J.; Filipič, B.; Smith, J., (Parallel Problem Solving from Nature-PPSN XIII: 13th International Conference, Ljubljana, Slovenia, September 13-17, 2014, Proceedings, vol. 8672 (2014), Springer)
[7] Betancourt, B.; Rodriguez, A.; Boyd, N., Modelling and prediction of financial trading networks: an application to the New York mercantile exchange natural gas futures market, J. R. Stat. Soc., Ser. C, Appl. Stat., 69, 1, 195-218 (2020)
[8] Borg, I.; Groenen, P., Modern Multidimensional Scaling: Theory and Applications (2005), Springer Science & Business Media · Zbl 1085.62079
[9] Chen, S.; Liu, S.; Ma, Z., Global and individualized community detection in inhomogeneous multilayer networks (2020), arXiv preprint
[10] D’Angelo, S.; Murphy, T. B.; Alfò, M., Latent space modelling of multidimensional networks with application to the exchange of votes in eurovision song contest, Ann. Appl. Stat., 13, 2, 900-930 (2019) · Zbl 1423.62168
[11] D’Angelo, S.; Alfò, M.; Fop, M., Model-based clustering for multivariate networks (2020), arXiv preprint
[12] D’Angelo, S.; Alfò, M.; Murphy, T. B., Modeling node heterogeneity in latent space models for multidimensional networks, Stat. Neerl., 74, 3, 324-341 (2020) · Zbl 1541.62393
[13] Durante, D.; Dunson, D., Nonparametric Bayes dynamic modelling of relational data, Biometrika, 101, 4, 883-898 (2014) · Zbl 1306.62075
[14] Durante, D.; Dunson, D., Bayesian inference and testing of group differences in brain networks, Bayesian Anal., 13, 1, 29-58 (2018) · Zbl 06873717
[15] Erdös, P.; Rényi, A., On random graphs, Publ. Math., 6, 290-297, 5 (1959) · Zbl 0092.15705
[16] Gamerman, D.; Lopes, H., Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference (2006), CRC Press · Zbl 1137.62011
[17] Gao, L.; Witten, D.; Bien, J., Testing for association in multi-view network data (2019), arXiv preprint
[18] Gelman, A.; Carlin, J. B.; Stern, H. S.; Dunson, D. B.; Vehtari, A.; Rubin, D. B., Bayesian Data Analysis (2013), CRC Press
[19] Gelman, A.; Hwang, J.; Vehtari, A., Understanding predictive information criteria for Bayesian models, Stat. Comput., 24, 6, 997-1016 (2014) · Zbl 1332.62090
[20] Gollini, I., lvm4net: latent variable models for networks (2019), r package version 0.3
[21] Gollini, I.; Murphy, T., Joint modeling of multiple network views, J. Comput. Graph. Stat., 25, 1, 246-265 (2016)
[22] Green, P.; Hastie, D., Reversible jump mcmc, Genetics, 155, 3, 1391-1403 (2009)
[23] Guhaniyogi, R.; Rodriguez, A., Joint modeling of longitudinal relational data and exogenous variables, Bayesian Anal. (2020) · Zbl 1459.62219
[24] Gupta, S.; Sharma, G.; Dukkipati, A., A generative model for dynamic networks with applications (2018), arXiv preprint
[25] Haario, H.; Saksman, E.; Tamminen, J., An adaptive Metropolis algorithm, Bernoulli, 7, 2, 223-242 (2001) · Zbl 0989.65004
[26] Hahn, E. D.; Soyer, R., Probit and logit models: differences in the multivariate realm, J. R. Stat. Soc. B, 1-12 (2005)
[27] Han, Q.; Xu, K.; Airoldi, E., Consistent estimation of dynamic and multi-layer block models, (International Conference on Machine Learning (2015)), 1511-1520
[28] Handcock, M.; Raftery, A.; Tantrum, J., Model-based clustering for social networks, J. R. Stat. Soc., Ser. A, Stat. Soc., 170, 2, 301-354 (2007)
[29] Hoff, P., Multiplicative latent factor models for description and prediction of social networks, Comput. Math. Organ. Theory, 15, 4, 261-272 (2009)
[30] Hoff, P., Multilinear tensor regression for longitudinal relational data, Ann. Appl. Stat., 9, 3, 1169 (2015) · Zbl 1454.62481
[31] Hoff, P. D., Bilinear mixed-effects models for dyadic data, J. Am. Stat. Assoc., 100, 469, 286-295 (2005) · Zbl 1117.62353
[32] Hoff, P. D., Modeling homophily and stochastic equivalence in symmetric relational data, (Advances in Neural Information Processing Systems (2008)), 657-664
[33] Hoff, P. D.; Raftery, A. E.; Handcock, M. S., Latent space approaches to social network analysis, J. Am. Stat. Assoc., 97, 460, 1090-1098 (2002) · Zbl 1041.62098
[34] Hoover, D. N., Row-column exchangeability and a generalized model for probability, (Exchangeability in Probability and Statistics (1982)), 281-291 · Zbl 0495.60040
[35] Kim, B.; Lee, K.; Xue, L.; Niu, X., A review of dynamic network models with latent variables, Stat. Surv., 12, 105 (2018) · Zbl 1401.62103
[36] Kolaczyk, E. D.; Csárdi, G., Statistical Analysis of Network Data with R, Vol. 65 (2014), Springer · Zbl 1290.62002
[37] Krackhardt, D., Cognitive social structures, Soc. Netw., 9, 2, 109-134 (1987)
[38] Krivitsky, P.; Handcock, M., Fitting latent cluster models for networks with latentnet, J. Stat. Softw., 24, 5 (2008)
[39] Krivitsky, P. N.; Handcock, M. S.; Raftery, A. E.; Hoff, P. D., Representing degree distributions, clustering, and homophily in social networks with latent cluster random effects models, Soc. Netw., 31, 3, 204-213 (2009)
[40] Li, W.-J.; Yeung, D.-Y.; Zhang, Z., Generalized latent factor models for social network analysis, (Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI). Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain (2011))
[41] Linkletter, C., Spatial process models for social network analysis (2007), Citeseer, Ph.D. thesis
[42] Liu, Q., (The 10th International Conference on Computer Engineering and Networks, Vol. 1274 (2020), Springer Nature)
[43] Lofland, C.; Rodríguez, A.; Moser, S., Assessing differences in legislators’ revealed preferences: a case study on the 107th us senate, Ann. Appl. Stat., 11, 1, 456-479 (2017)
[44] Ma, Z.; Ma, Z.; Yuan, H., Universal latent space model fitting for large networks with edge covariates, J. Mach. Learn. Res., 21, 4, 1-67 (2020) · Zbl 1497.68432
[45] Magnani, M.; Micenkova, B.; Rossi, L., Combinatorial analysis of multiple networks (2013), arXiv preprint
[46] Minhas, S.; Hoff, P. D.; Ward, M. D., Inferential approaches for network analysis: amen for latent factor models, Polit. Anal., 27, 2, 208-222 (2019)
[47] Nowicki, K.; Snijders, T., Estimation and prediction for stochastic blockstructures, J. Am. Stat. Assoc., 96, 455, 1077-1087 (2001) · Zbl 1072.62542
[48] Paez, M.; Amini, A.; Lin, L., Hierarchical stochastic block model for community detection in multiplex networks (2019), arXiv preprint
[49] Paul, S.; Chen, Y., Consistent community detection in multi-relational data through restricted multi-layer stochastic blockmodel, Electron. J. Stat., 10, 2, 3807-3870 (2016) · Zbl 1357.62226
[50] Paul, S.; Chen, Y., A random effects stochastic block model for joint community detection in multiple networks with applications to neuroimaging, Ann. Appl. Stat., 14, 2, 993-1029 (2020) · Zbl 1446.62287
[51] Paul, S.; Chen, Y., Spectral and matrix factorization methods for consistent community detection in multi-layer networks, Ann. Stat., 48, 1, 230-250 (2020) · Zbl 1440.62091
[52] Rastelli, R.; Maire, F.; Friel, N., Computationally efficient inference for latent position network models (2019), arXiv preprint
[53] Reyes, P.; Rodriguez, A., Stochastic blockmodels for exchangeable collections of networks (2016), arXiv preprint
[54] Rodriguez, A., A Bayesian nonparametric model for exchangeable multinetwork data based on fragmentation and coagulation processes (2015), University of California: University of California Santa Cruz, Tech. Rep., Technical report
[55] Roethlisberger, F.; Dickson, W., Management and the Worker, Vol. 5 (2003), Psychology Press
[56] Rubin, D. B., Inference and missing data, Biometrika, 63, 3, 581-592 (1976) · Zbl 0344.62034
[57] Salter-Townshend, M.; McCormick, T. H., Latent space models for multiview network data, Ann. Appl. Stat., 11, 3, 1217 (2017) · Zbl 1380.62269
[58] Schweinberger, M.; Snijders, T., Settings in social networks: a measurement model, Sociol. Method., 33, 1, 307-341 (2003)
[59] Sewell, D., Latent space models for network perception data, Netw. Sci., 7, 2, 160-179 (2019)
[60] Sewell, D.; Chen, Y., Latent space models for dynamic networks, J. Am. Stat. Assoc., 110, 512, 1646-1657 (2015) · Zbl 1373.62580
[61] Sewell, D.; Chen, Y., Latent space models for dynamic networks with weighted edges, Soc. Netw., 44, 105-116 (2016)
[62] Sewell, D.; Chen, Y., Latent space approaches to community detection in dynamic networks, Bayesian Anal., 12, 2, 351-377 (2017) · Zbl 1384.62203
[63] Sosa, J.; Buitrago, L., A review of latent space models for social networks, Rev. Colomb. Estad., 44, 1, 171-200 (2021) · Zbl 1470.62181
[64] Sosa, J.; Rodriguez, A., A latent space model for cognitive social structures data, Soc. Netw., 65, 1, 85-97 (2021)
[65] Spencer, N. A.; Junker, B.; Sweet, T. M., Faster mcmc for Gaussian latent position network models (2020), arXiv preprint
[66] Steglich, C.; Snijders, T. A.; West, P., Applying siena, Methodology, 2, 1, 48-56 (2006)
[67] Swartz, T.; Gill, P.; Muthukumarana, S., A Bayesian approach for the analysis of triadic data in cognitive social structures, J. R. Stat. Soc., Ser. C, Appl. Stat., 64, 4, 593-610 (2015)
[68] Turnbull, K., Advancements in latent space network modelling (2020), Lancaster University, Ph.D. thesis
[69] Vickers, M.; Chan, S., Representing Classroom Social Structure (1981), Victoria Institute of Secondary Education: Victoria Institute of Secondary Education Melbourne
[70] Wang, L.; Zhang, Z.; Dunson, D., Common and individual structure of brain networks, Ann. Appl. Stat., 13, 1, 85-112 (2019) · Zbl 1417.62332
[71] Watanabe, S., Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory, J. Mach. Learn. Res., 11, Dec, 3571-3594 (2010) · Zbl 1242.62024
[72] Watanabe, S., A widely applicable Bayesian information criterion, J. Mach. Learn. Res., 14, Mar, 867-897 (2013) · Zbl 1320.62058
[73] Wilson, J. D.; Cranmer, S.; Lu, Z.-L., A hierarchical latent space network model for population studies of functional connectivity, Comput. Brain Behav., 1-16 (2020)
[74] Zhang, X., Statistical analysis for network data using matrix variate models and latent space models (2020), The University of Michigan, Ph.D. thesis
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.