×

Existence, uniqueness and stability of fractional impulsive functional differential inclusions. (English) Zbl 1483.34110

Summary: In the paper, we discuss necessary and sufficient conditions to obtain the existence, uniqueness and stability of solutions of fractional impulsive functional differential equations towards the \(\psi \)-Liouville-Caputo fractional derivative, through fixed point theorem, Arzela-Ascoli theorem and multivalued analysis theory.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K09 Functional-differential inclusions
47N20 Applications of operator theory to differential and integral equations
34K45 Functional-differential equations with impulses
34K20 Stability theory of functional-differential equations

References:

[1] Abada, N.; Benchohra, M.; Hammouche, H., Existence and controllability results for nondensely defined impulsive semilinear functional differential inclusions, J. Differ. Equ., 246, 10, 3834-3863 (2009) · Zbl 1171.34052
[2] Abdo, MS; Panchal, SK; Hussien, HS, Fractional integro-differential equations with nonlocal conditions and \(\psi \)-Hilfer fractional derivative, Math. Modell. Anal., 24, 4, 564-584 (2019) · Zbl 07868782
[3] Ahmad, B.; Alruwaily, Y.; Alsaedi, A.; Nieto, JJ, Fractional integro-differential equations with dual anti-periodic boundary conditions, Differ. Integral Equ., 33, 181-206 (2020) · Zbl 1488.45023
[4] Aubin, J-P; Cellina, A., Differential Inclusions: Set-valued Maps and Viability Theory (2012), Berlin: Springer, Berlin · Zbl 0538.34007
[5] Baghani, H.; Alzabut, J.; Farokhi-Ostad, J.; Nieto, JJ, Existence and uniqueness of solutions for a coupled system of sequential fractional differential equations with initial conditions, J. Pseudo-Differ. Oper. Appl., 11, 1731-1741 (2020) · Zbl 1455.34004
[6] Balasubramaniam, P.; Vinayagam, D., Existence of solutions of nonlinear stochastic integrodifferential inclusions in a Hilbert space, Comput. Math. Appl., 50, 5, 809-821 (2005) · Zbl 1094.60045
[7] Benchohra, M.; Ouahab, A., Initial boundary value problems for second order impulsive functional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2003, 3, 1-10 (2003) · Zbl 1028.34073
[8] Benchohra, M.; Ouahab, A., Initial boundary value problems for second order impulsive functional differential inclusions, Electron. J. Qual. Theory Differ. Equ., 2003, 3, 1-10 (2003) · Zbl 1028.34073
[9] Boudjerida, A.; Seba, D.; N’Guérékata, GM, Controllability of coupled systems for impulsive \(\psi \)-Hilfer fractional integro-differential inclusions, Appl. Anal. (2020) · Zbl 1497.45009 · doi:10.1080/00036811.2020.1742884
[10] Bressan, A.; Colombo, G., Existence and selections of maps with decomposable values, Stud. Math., 90, 69-86 (1988) · Zbl 0677.54013
[11] Chang, Y-K; Li, W-T, Existence results for second order impulsive functional differential inclusions, J. Math. Anal. Appl., 301, 2, 477-490 (2005) · Zbl 1067.34083
[12] Du, J.; Jiang, W.; Niazi, AUK, Approximate controllability of impulsive Hilfer fractional differential inclusions, J. Nonlinear Sci. Appl., 10, 2, 595-611 (2017) · Zbl 1412.34022
[13] Frigon, M., Théorémes d’existence de solutions d’inclusions différentielles, Topological Methods in Differential Equations and Inclusions, 51-87 (1995), Dordrecht: Springer, Dordrecht · Zbl 0834.34021
[14] Fu, XL; Yan, BQ; Liu, YS, Theory of Impulsive Differential System (2005), Beijing: Science Press, Beijing
[15] Harikrishnan, S., Note on the solution of random differential equations via \(\psi \)-Hilfer fractional derivative, Adv. Differ. Equ., 2018, 1, 224 (2018) · Zbl 1446.34071
[16] Harikrishnan, S.; Elsayed, EM; Kanagarajan, K., Existence and uniqueness results for fractional pantograph equations involving \(\psi \)-Hilfer fractional derivative, Dyn. Contin. Discrete Impuls. Syst., 25, 319-328 (2018) · Zbl 1409.34068
[17] Hazarikaa, B.; Srivastavac, HM; Arabe, R.; Rabbani, M., Application of simulation function and measure of noncompactness for solvability of nonlinear functional integral equations and introduction to an iteration algorithm to find solution, Appl. Math. Comput., 360, 131-146 (2019) · Zbl 1428.45003
[18] Hu, L.; Ren, Y., Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays, Acta Appl. Math., 111, 3, 303-317 (2010) · Zbl 1202.60098
[19] Kilbas, AA; Srivastava, HM; Trujillo, JJ, Theory and Applications of Fractional Differential Equations (2006), Amsterdam: Elsevier, Amsterdam · Zbl 1092.45003
[20] Kryszewski, W.; Plaskacz, S., Periodic solutions to impulsive differential inclusions with constraints, Nonlinear Anal. Theory Methods Appl., 65, 9, 1794-1804 (2006) · Zbl 1107.34004
[21] Kucche, KD; Mali, AD; Vanterler da C. Sousa, J., On the nonlinear \(\psi \)-Hilfer fractional differential equations, Comput. Appl. Math., 38, 2, 73 (2019) · Zbl 1449.34023
[22] Liang, J.; Yang, H., Controllability of fractional integro-differential evolution equation with nonlocal conditions, Appl. Math. Comput., 254, 20-29 (2015) · Zbl 1410.93022
[23] Liu, Z.; Zeng, B., Existence and controllability for fractional evolution inclusions of Clark’s subdifferential type, Appl. Math. Comput., 257, 178-189 (2015) · Zbl 1338.34110
[24] Liu, K.; Wang, J.; O’Regan, D., Ulam-Hyers-Mittag-Leffler stability for \(\psi \)-Hilfer fractional-order delay differential equations, Adv. Differ. Equ., 2019, 1, 1-12 (2019) · Zbl 1458.34128
[25] Mishra, LN; Srivastava, HM; Sen, M., Existence results for some nonlinear functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., 11, 1, 1-10 (2016) · Zbl 1379.45005
[26] Ren, L.; Wang, J.; Feckan, M., Asymptotically periodic solutions for Caputo type fractional evolution equations, Fract. Calc. Appl. Anal., 21, 5, 1294-1312 (2018) · Zbl 1426.34020
[27] Rudolf, H., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002
[28] Smart, DR, Fixed Point Theorems (1974), Cambridge: Cambridge University Press, Cambridge · Zbl 0297.47042
[29] Srivastava, HM; Bedre, SV; Khairnar, SM; Desale, BS, Krasnosel’skii type hybrid fixed point theorems and their applications to fractional integral equations, Abstr. Appl. Anal., 2014, 710746 (2014) · Zbl 1473.47020
[30] Srivastava, HM; Shehata, A.; Moustafa, SI, Some fixed point theorems for \(F(\psi ,\varphi )\)-contractions and their application to fractional differential equations, Russ. J. Math. Phys., 27, 3, 385-398 (2020) · Zbl 1447.54039
[31] Vanterler da C. Sousa, J.; De Oliveira, EC, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81, 50-56 (2018) · Zbl 1475.45020
[32] Vanterler da C. Sousa, J.; de Oliveira, EC, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator, J. Fixed Point Theory Appl., 20, 3, 96 (2018) · Zbl 1398.34023
[33] Vanterler da C. Sousa, J.; de Oliveira, EC, On the \(\psi \)-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simul., 60, 72-91 (2018) · Zbl 1470.26015
[34] Vanterler da C. Sousa, J.; de Oliveira, EC, Leibniz type rule: \( \psi \)-Hilfer fractional operator, Commun. Nonlinear Sci. Numer. Simul., 77, 305-311 (2019) · Zbl 1477.26012
[35] Vanterler da C. Sousa, J.; Frederico, GSF; de Oliveira, EC, \( \psi \)-Hilfer pseudo-fractional operator: new results about fractional calculus, Comput. Appl. Math., 39, 4, 1-33 (2020) · Zbl 1463.26015
[36] Vanterler da C. Sousa, J.; Benchohra, M.; N’Guérékata, GM, Attractivity for differential equations of fractional order and \(\psi \)-Hilfer type, Frac. Calc. Appl. Anal., 23, 4, 1188-1207 (2020) · Zbl 1488.34065
[37] Vanterler da C. Sousa, J.; Machado, JAT; de Oliveira, EC, The \(\psi \)-Hilfer fractional calculus of variable order and its applications, Comput. Appl. Math., 39, 4, 1-35 (2020) · Zbl 1476.26004
[38] Wang, J.; Ibrahim, AG; O’Regan, D., Topological structure of the solution set for fractional non-instantaneous impulsive evolution inclusions, J. Fixed Point Theory Appl., 20, 2, 59 (2018) · Zbl 1398.34088
[39] Wang, J.; Ibrahim, AG; O’Regan, D.; Zhou, Y., Controllability for noninstantaneous impulsive semilinear functional differential inclusions without compactness, Indag. Math., 29, 5, 1362-1392 (2018) · Zbl 1401.26018
[40] Wang, J.; Ibrahim, G.; ORegan, D., Controllability of Hilfer fractional noninstantaneous impulsive semilinear differential inclusions with nonlocal conditions, Nonlinear Anal. Model. Control, 24, 6, 958-984 (2019) · Zbl 1439.34015
[41] Ye, G.; Shen, J.; Li, J., Existence results for mth-order impulsive functional differential inclusions, Indag. Math., 22, 1, 1-11 (2011) · Zbl 1242.34121
[42] Yu, X.; Debbouche, A.; Wang, J., On the iterative learning control of fractional impulsive evolution equations in Banach spaces, Math. Methods Appl. Sci., 40, 17, 6061-6069 (2017) · Zbl 1376.93048
[43] Zhou, Y., Fractional Evolution Equations and Inclusions: Analysis and Control (2015), Amsterdam: Elsevier, Amsterdam
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.