×

Existence of solutions for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation and Dirichlet boundary value. (English) Zbl 1508.34010

In this paper, the authors study a boundary value problem for fractional instantaneous and non-instantaneous impulsive differential equations with perturbation subject to Dirichlet boundary conditions. By using the Weierstrass theorem the existence of classical solutions is proved. An example illustrating the obtained results is also presented.

MSC:

34A08 Fractional ordinary differential equations
34B37 Boundary value problems with impulses for ordinary differential equations
Full Text: DOI

References:

[1] M. Badiale and E. Serra, Semilinear Elliptic Eequations for Beginners: Existence Results Via the Variational Approach, Universitext. Springer, London, 2011. · Zbl 1214.35025
[2] J. Bernal, Shape analysis, Lebesgue integration and Absolute continuity connections, Universitext. Springer, London, 2019.
[3] L. Chen; Z. He; C. Li; H. Umar, On existence and continuation of solutions of the state-dependent impulsive dynamical system with boundary constraints, Adv. Difference Equ., 2019, 1-15 (2019) · Zbl 1459.34063 · doi:10.1186/s13662-019-2070-z
[4] P. Chen; X. Zhang; Y. Li, Iterative method for a new class of evolution equations with non-instantaneous impulses, Taiwanese J. Math., 21, 913-942 (2017) · Zbl 1390.34189 · doi:10.11650/tjm/7912
[5] Z. He; C. Li; Z. Cao; H. Li, Periodicity and global exponential periodic synchronization of delayed neural networks with discontinuous activations and impulsive perturbations, Neurocomputing (Amsterdam), 431, 111-127 (2021) · doi:10.1016/j.neucom.2020.09.080
[6] Z. He; C. Li; L. Chen; Z. Cao, Dynamic behaviors of the FitzHugh-Nagumo neuron model with state-dependent impulsive effects, Neural Networks, 121, 497-511 (2020) · Zbl 1444.92012 · doi:10.1016/j.neunet.2019.09.031
[7] Z. He, C. Li, H. Li and Q. Zhang, Global exponential stability of high-order hopfield neural networks with state-dependent impulses, Phys. A, 542 (2020), 123434, 21 pp. · Zbl 07527109
[8] E. Hernández; D. O’Regan, On hybrid impulsive and switching neural networks, Proceedings of the American Mathematical Society, 5, 1641-1649 (2013) · Zbl 1266.34101
[9] F. Jiao; Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory, Comput. Math. Appl., 62, 1181-1199 (2011) · Zbl 1235.34017 · doi:10.1016/j.camwa.2011.03.086
[10] A. Kilbas, H. Srivastava and J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B. V., Amsterdam, 2006. · Zbl 1092.45003
[11] C. Li; G. Feng; T. Huang, On hybrid impulsive and switching neural networks, IEEE Transactions on Systems, Man and Cybernetics. Part B, Cybernetics, 6, 1549-1560 (2008)
[12] C. Li; S. Wu; G. Feng; X. Liao, Stabilizing effects of impulses in discrete-time delayed neural networks, IEEE Transactions on Neural Networks, 22, 323-329 (2011) · doi:10.1109/TNN.2010.2100084
[13] X. Li; D. Peng; J. Cao, Lyapunov stability for impulsive systems via event-triggered impulsive control, IEEE Trans. Automat. Control, 65, 4908-4913 (2020) · Zbl 1536.93638 · doi:10.1109/TAC.2020.2964558
[14] X. Li; S. Song; J. Wu, Exponential stability of nonlinear systems with delayed impulses and applications, IEEE Trans. Automat. Control, 64, 4024-4034 (2019) · Zbl 1482.93452 · doi:10.1109/TAC.2019.2905271
[15] X. Li; J. Wu, Sufficient stability conditions of nonlinear differential systems under impulsive control with state-dependent delay, IEEE Trans. Automat. Control, 63, 306-311 (2018) · Zbl 1390.34177 · doi:10.1109/TAC.2016.2639819
[16] A. Rontó; I. Rach \({\rm{\dot u}}\) nková; M. Rontó; L. Rach \({\rm{\dot u}}\) nek, Investigation of solutions of state-dependent multi-impulsive boundary value problems, Georgian Math. J., 24, 287-312 (2017) · Zbl 1367.34027 · doi:10.1515/gmj-2016-0084
[17] J. Shen; W. Wang, Impulsive boundary value problems with nonlinear boundary conditions, Nonlinear Anal., 69, 4055-4062 (2008) · Zbl 1171.34309 · doi:10.1016/j.na.2007.10.036
[18] Y. Tian; M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 94, 160-165 (2019) · Zbl 1418.34036 · doi:10.1016/j.aml.2019.02.034
[19] J. Wang, Stability of noninstantaneous impulsive evolution equations, Appl. Math. Lett., 73, 157-162 (2017) · Zbl 1379.34056 · doi:10.1016/j.aml.2017.04.010
[20] J. Wang; X. Li, Periodic BVP for integer/fractional order nonlinear differential equations with non-instantaneous impulses, J. Appl. Math. Comput., 46, 321-334 (2014) · Zbl 1296.34036 · doi:10.1007/s12190-013-0751-4
[21] D. Yang; J. Wang, Integral boundary value problems for nonlinear non-instantaneous impulsive differential equations, J. Appl. Math. Comput., 55, 59-78 (2017) · Zbl 1378.34022 · doi:10.1007/s12190-016-1025-8
[22] X. Yu; J. Wang, Periodic boundary value problems for nonlinear impulsive evolution equations on Banach spaces, Commun. Nonlinear Sci. Numer. Simul., 22, 980-989 (2015) · Zbl 1339.34069 · doi:10.1016/j.cnsns.2014.10.010
[23] W. Zhang and W. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 99 (2020), 105993, 7 pp. · Zbl 1426.34022
[24] X. Zhang, C. Li and Z. He, Cluster synchronization of delayed coupled neural networks: Delay-dependent distributed impulsive control, Neural Networks, 142 (2021), 34-43. · Zbl 1526.93254
[25] J. Zhou, Y. Deng and Y. Wang, Variational approach to \(p\)-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 106251, 9 pp. · Zbl 1441.34021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.