×

On establishing qualitative theory to nonlinear boundary value problem of fractional differential equations. (English) Zbl 1486.34012

Summary: In this article, we study a class of nonlinear fractional differential equation for the existence and uniqueness of a positive solution and the Hyers-Ulam-type stability. To proceed this work, we utilize the tools of fixed point theory and nonlinear analysis to investigate the concern theory. We convert fractional differential equation into an integral alternative form with the help of the Greens function. Using the desired function, we studied the existence of a positive solution and uniqueness for proposed class of fractional differential equation. In next section of this work, the author presents stability analysis for considered problem and developed the conditions for Ulam’s type stabilities. Furthermore, we also provided two examples to illustrate our main work.

MSC:

34A08 Fractional ordinary differential equations
26A33 Fractional derivatives and integrals
34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations
35A08 Fundamental solutions to PDEs
45G10 Other nonlinear integral equations
47H10 Fixed-point theorems

References:

[1] El-Shahed, M.; Nieto, JJ, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl., 59, 11, 3438-3443 (2010) · Zbl 1197.34003 · doi:10.1016/j.camwa.2010.03.031
[2] Agarwal, R.; Benchohra, M.; Hamani, S., A survey on existence results for boundary value problem of non-linear fractional differential equations and inclusions, J. Math. Appl., 109, 3, 973-1033 (2010) · Zbl 1198.26004
[3] El-Sayad, AM, Non-linear functional differential equation of ordinary orders, Nonlinear Anal., 33, 181-186 (1998) · Zbl 0934.34055 · doi:10.1016/S0362-546X(97)00525-7
[4] Khan, RA; Shah, K., Existence and uniqueness of solution to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19, 515-526 (2015)
[5] Zhou, L.; Hu, G., Global exponential periodicity and stability of cellular neural networks with variable and distributed delays, Appl. Math. Comput., 195, 2, 402-411 (2008) · Zbl 1137.34350
[6] Raja, M., Khan, J.A., Qureshi, I.M.: Solution of fractional order system of Bagley-Torivk equation using evolutionary computational intelligence. Math. Prob. Eng. 2011, 18 (2011) · Zbl 1382.34010
[7] Mohebbi, A.; Asgari, Z.; Dehghan, M., Numerical solution of non-linear Jaulent-Miodek and Whitam-Brore-Kaup, Commun. Nonlinear Sci. Numer. Simul., 17, 12, 4602-4610 (2012) · Zbl 1266.65176 · doi:10.1016/j.cnsns.2012.04.011
[8] Goodrich, C., Existence of a positive solution to a class of fractional differential equations, J. Comput. Math. Appl., 23, 9, 1050-1055 (2010) · Zbl 1204.34007
[9] Caputo, M., Linear models of dissipation whose Q is almost frequency independent, Int. J. Geogr. Sci., 13, 5, 529-539 (1967)
[10] Yang, Y., Ma, Y., Wang, L.: Legendre polynomails operational matrix method for solving fractional partial differential equations with variable coefficients. Math. Probl. Eng. 2015, 1-9 (2015) · Zbl 1394.65114
[11] Carpinteri, A.; Mainardi, F., Fractals and Fractional Calculus Continuum Mechanics (1997), Berlin: Springer, Berlin · Zbl 0917.73004 · doi:10.1007/978-3-7091-2664-6
[12] Rostamy, D.; Karimi, K.; Mohamadi, E., Solving fractional partial differential equations by an efficient new basis, Int. J. Appl. Math. Comput. Sci., 5, 1, 6-12 (2013)
[13] Tarasov, VE, Fractional integro differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys., 158, 3, 355-359 (2009) · Zbl 1177.78020 · doi:10.1007/s11232-009-0029-z
[14] Baillie, RT, Long memory processes and fractional integration in econometrics, J. Econ., 73, 5-59 (1996) · Zbl 0854.62099 · doi:10.1016/0304-4076(95)01732-1
[15] Magin, RL, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32, 2, 1-104 (2004) · doi:10.1615/CritRevBiomedEng.v32.10
[16] Magin, RL, Fractional calculus in bioengineering-part 2, Crit. Rev. Biomed. Eng., 32, 2, 105-193 (2004) · doi:10.1615/CritRevBiomedEng.v32.i2.10
[17] Magin, RL, Fractional calculus in bioengineering-part 3, Crit. Rev. Biomed. Eng., 32, 3-4, 194-377 (2004)
[18] Lacroix, SF, Calcul Differentiel et du, Trait.6 du Calc. Integ. Paris, 3, 409-410 (1819)
[19] Abbas, MI, Existence and uniqueness of solution for a boundary value problem of fractional order involving two Caputo’s fractional derivatives, Adv. Differ. Equ., 2015, 252 (2015) · Zbl 1422.34010 · doi:10.1186/s13662-015-0581-9
[20] Ahmad, B.; Nieto, JJ, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 58, 2009, 1838-1843 (2009) · Zbl 1205.34003 · doi:10.1016/j.camwa.2009.07.091
[21] Kumam, P., Existence results and Hyers-Ulam stability to a class of nonlinear arbitrary order differential equations, J. Nonlinear Sci. Appl., 10, 2017, 2986-2997 (2017) · Zbl 1412.34035 · doi:10.22436/jnsa.010.06.13
[22] Ali, G., On existence and stability results to a class of boundary value problems under Mittag-Leffler power law, Adv. Differ. Equ., 2020, 407, 1-13 (2020) · Zbl 1486.34150
[23] Ali, Z., Modeling and analysis of novel COVID-19 under fractal-fractional derivative with Case Study of Malaysia, Fractals (2020) · Zbl 1487.34100 · doi:10.1142/S0218348X21500201
[24] Mawhin, J., Topological Degree Methods in Nonlinear Boundary Value Problems, CMBS Regional Conference Series in Mathematics (1979), Providence: American Mathematical Society, Providence · Zbl 0414.34025 · doi:10.1090/cbms/040
[25] Isaia, F., On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75, 2, 233-240 (2016) · Zbl 1164.45305
[26] Wang, J.; Zhou, Y.; Wei, W., Study in fractional differential equations by means of topological degree methods, Num. Funct. Anal. Optim., 33, 2, 216-238 (2012) · Zbl 1242.34012 · doi:10.1080/01630563.2011.631069
[27] Ali, A.; Khan, RA, Existence of solutions of fractional differential equations via topological degree theory, J. Comput. Theor. Nanosci., 13, 2016, 1-5 (2016)
[28] Ulam, SM, Problems in Modern Mathematic (1964), New York: Wiley, New York · Zbl 0137.24201
[29] Hyers, DH, On the stability of the linear functional equation, Natl. Acad. Sci. U. S. A., 27, 4, 222-224 (1941) · JFM 67.0424.01 · doi:10.1073/pnas.27.4.222
[30] Aoki, T., On the stability of the linear transformation in Banach space, J. Math. Soc. Jpn., 2, 64-66 (1950) · Zbl 0040.35501 · doi:10.2969/jmsj/00210064
[31] Trigeassou, J., A Lyapunov approach to the stability of fractional differential equations, Signal Process., 91, 3, 437-445 (2011) · Zbl 1203.94059 · doi:10.1016/j.sigpro.2010.04.024
[32] Agarwal, R.; Hristova, S.; Q’Regan, D., Stability of solutions to impulsive caputo fractional differential equation, Electron. J. Differ. Equ., 2016, 1-22 (2016) · Zbl 1408.34045 · doi:10.1186/s13662-016-0810-x
[33] Agarwal, R.; O’Regan, D.; Hristova, S., Stability of Caputo fractional differential equations by Lyapunov function, Appl. Math., 60, 653-676 (2015) · Zbl 1374.34005 · doi:10.1007/s10492-015-0116-4
[34] Rassias, TM, On the stability of the linear mapping in Banach space, Proc. Am. Math. Soc., 72, 2, 297-300 (1978) · Zbl 0398.47040 · doi:10.1090/S0002-9939-1978-0507327-1
[35] Obloza, M., Hyers stability of the linear differential equation, Prace Math., 13, 13, 259-270 (1993) · Zbl 0964.34514
[36] Wang, J.; Lv, L.; Zhou, Y., Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ., 2011, 1-10 (2011) · Zbl 1213.45009 · doi:10.1155/2011/783726
[37] Gao, Z.; Yu, X.; Wang, J., Exp-type Ulam-Hyers stability of fractional differential equations with positive constant coefficient, Adv. Differ. Equ., 238, 2015, 1-10 (2015) · Zbl 1422.34032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.