×

On a new class of impulsive \(\eta\)-Hilfer fractional Volterra-Fredholm integro-differential equations. (English) Zbl 1536.45003

Summary: This work addresses the idea of the uniqueness and existence results for a class of boundary value problems (BVPs) for implicit Volterra-Fredholm integro-differential equations (V-FIDEs) with fractional \(\eta\)-Hilfer nonlinear equations and multi-point fractional boundary non-instantaneous conditions. The conclusions are confirmed by the fixed point of Krasnoselskii’s theorem and the Banach contraction principle. Finally, a concrete example is given to illustrate our main conclusions.

MSC:

45J05 Integro-ordinary differential equations
45D05 Volterra integral equations
45B05 Fredholm integral equations
26A33 Fractional derivatives and integrals
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI

References:

[1] M. I. Abbas (2021). Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function. Mathematical Meth-ods in the Applied Sciences, 44(13), 10432-10447. https://doi.org/10.1002/mma.7419. · Zbl 1475.45012 · doi:10.1002/mma.7419
[2] R. Agarwal, S. Hristova & D. O’Regan (2017). Non-instantaneous impulses in Caputo fractional differential equations. Fractional Calculus and Applied Analysis, 20(3), 595-622. https://doi.org/10.1515/fca-2017-0032. · Zbl 1370.34008 · doi:10.1515/fca-2017-0032
[3] M. R. Ali, A. R. Hadhoud & H. M. Srivastava (2019). Solution of fractional Volterra-Fredholm integro-differential equations under mixed boundary conditions by using the HOBW method. Advances in Difference Equations, 2019(1), Article ID: 115. https://doi.org/ 10.1186/s13662-019-2044-1. · Zbl 1459.65238 · doi:10.1186/s13662-019-2044-1
[4] A. Anguraj, P. Karthikeyan, M. Rivero & J. J. Trujillo (2014). On new existence results for fractional integro-differential equations with impulsive and integral conditions. Computers & Mathematics with Applications, 66(12), 2587-2594. https://doi.org/10.1016/j.camwa.2013. 01.034. · Zbl 1368.45005 · doi:10.1016/j.camwa.2013.01.034
[5] S. Asawasamrit, A. Kijjathanakorn, S. K. Ntouyas & J. Tariboon (2018). Nonlocal boundary value problems for Hilfer fractional differential equations. Bulletin of the Korean Mathematical Society, 55(6), 1639-1657. https://doi.org/10.4134/BKMS.b170887. · Zbl 1408.34004 · doi:10.4134/BKMS.b170887
[6] S. Asawasamrit, Y. Thadang, S. K. Ntouyas & J. Tariboon (2021). Non-instantaneous im-pulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function and Riemann-Stieltjes fractional integral boundary conditions. Axioms, 10(3), 130. https://doi.org/10.3390/axioms10030130. · doi:10.3390/axioms10030130
[7] D. Baleanu, H. Mohammadi & S. Rezapour (2020). Analysis of the model of HIV-1 infection of CD4 + T-cell with a new approach of fractional derivative. Advances in Difference Equations, 2020(1), 1-17. https://doi.org/10.1186/s13662-020-02544-w. · Zbl 1482.37090 · doi:10.1186/s13662-020-02544-w
[8] S. Etemad, I. Avci, P. Kumar, D. Baleanu & S. Rezapour (2022). Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version. Chaos, Solitons & Fractals, 162, Article ID: 112511. https://doi.org/10.1016/j. chaos.2022.112511. · doi:10.1016/j.chaos.2022.112511
[9] L. Guo, K. Ali Shah, S. Bai & A. Zada (2022). On the analysis of a neutral fractional differential system with impulses and delays. Fractal and Fractional, 6(11), 673. https://doi.org/10.3390/ fractalfract6110673. · doi:10.3390/fractalfract6110673
[10] V. Gupta & J. Dabas (2017). Nonlinear fractional boundary value problem with not instanta-neous impulse. AIMS Mathematics, 2(2), 365-376. https://doi.org/10.3934/Math.2017.2.365. · Zbl 1431.34009 · doi:10.3934/Math.2017.2.365
[11] A. A. Hamoud (2020). Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro differential equations. Advances in the Theory of Nonlinear Analysis and its Application, 4(4), 321-331. https://doi.org/10.31197/atnaa.799854. · doi:10.31197/atnaa.799854
[12] A. A. Hamoud (2021). Uniqueness and stability results for Caputo fractional Volterra-Fredholm integrodifferential equations. Journal of Siberian Federal University. Mathematics & Physics, 14(3), 313-325. https://doi.org/10.17516/1997-1397-2021-14-3-313-325. · Zbl 1535.45005 · doi:10.17516/1997-1397-2021-14-3-313-325
[13] A. A. Hamoud (2023). On time scales fractional Volterra-Fredholm integro-differential equa-tion. Discontinuity, Nonlinearity, and Complexity, 12(3), 615-630. https://doi.org/10.5890/ DNC.2023.09.009. · doi:10.5890/DNC.2023.09.009
[14] A. A. Hamoud, S. A. M. Jameel, N. M. Mohammed, H. Emadifar, F. Parvaneh & M. Khademi (2023). On controllability for fractional Volterra-Fredholm system. Nonlinear Functional Anal-ysis and Applications, 28(2), 407-420. https://doi.org/10.22771/nfaa.2023.28.02.06. · Zbl 1530.45008 · doi:10.22771/nfaa.2023.28.02.06
[15] A. A. Hamoud, A. D. Khandagale, R. Shah & K. P. Ghadle (2023). Some new results on Hadamard neutral fractional nonlinear Volterra-Fredholm integro-differential equations. Discontinuity, Nonlinearity, and Complexity, 12(4), 893-903. https://doi.org/10.5890/DNC. 2023.12.013. · doi:10.5890/DNC.2023.12.013
[16] A. A. Hamoud & M. Osman (2023). Existence, uniqueness and stability results for fractional nonlinear Volterra-Fredholm integro-differential equations. TWMS Journal of Applied and Engineering Mathematics, 13(2), 491-506.
[17] A. A. Hamoud, N. M. Mohammed & R. Shah (2023). Theoretical analysis for a system of non-linear ϕ-Hilfer fractional Volterra-Fredholm integro-differential equations. Journal of Siberian Federal University Mathematics & Physics, 16(2), 216-229.
[18] E. Hernández & D. O’Regan (2013). On a new class of abstract impulsive differential equa-tions. Proceedings of the American Mathematical Society, 141(5), 1641-1649. http://dx.doi.org/ 10.1090/S0002-9939-2012-11613-2. · Zbl 1266.34101 · doi:10.1090/S0002-9939-2012-11613-2
[19] R. Hilfer (2000). Applications of Fractional Calculus in Physics. World Scientific, Germany. https://doi.org/10.1142/3779. · Zbl 0998.26002 · doi:10.1142/3779
[20] K. H. Hussain, A. A. Hamoud & N. Mohammed (2019). Some new uniqueness results for fractional integro-differential equations. Nonlinear Functional Analysis and Applications, 24(4), 827-836. https://doi.org/10.22771/nfaa.2019.24.04.13. · Zbl 1445.45014 · doi:10.22771/nfaa.2019.24.04.13
[21] S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour & M. K. A. Kaabar (2022). On the stochastic modeling of COVID-19 under the environmental white noise. Journal of Function Spaces, 2022, Article ID: 4320865. https://doi.org/10.1155/2022/4320865. · Zbl 1494.34124 · doi:10.1155/2022/4320865
[22] A. G. Ibrahim & A. A. Elmandouh (2021). Existence and stability of solutions of ψ-Hilfer fractional functional differential inclusions with non-instantaneous impulses. AIMS Mathe-matics, 6(10), 10802-10832. https://doi.org/10.3934/math.2021628. · Zbl 1525.34023 · doi:10.3934/math.2021628
[23] K. Ivaz, I. Alasadi & A. Hamoud (2022). On the Hilfer fractional Volterra-Fredholm integro differential equations. IAENG International Journal of Applied Mathematics, 52(2), 426-431.
[24] S. Kailasavalli, M. M. Arjunan & P. Karthikeyan (2015). Existence of solutions for fractional boundary value problems involving integro-differential equations in Banach spaces. Nonlin-ear Studies, 22(2), 341-358. · Zbl 1334.34174
[25] P. Karthikeyan, K. Venkatachalam & S. Abbas (2021). Existence results for fractional im-pulsive integro-differential equations with integral conditions of Katugampola type. Acta Mathematica Universitatis Comenianae, 90(4), 421-436. · Zbl 1481.45007
[26] A. A. Kilbas, H. M. Srivastava & J. J. Trujillo (2006). Theory and Applications of Fractional Differential Equations volume 204. Elsevier, Amsterdam. · Zbl 1092.45003
[27] C. Long, J. Xie, G. Chen & D. Luo (2020). Integral boundary value problem for fractional order differential equations with non-instantaneous impulses. International Journal of Mathe-matical Analysis, 14(6), 251-266. https://doi.org/10.12988/ijma.2020.912110. · doi:10.12988/ijma.2020.912110
[28] N. I. Mahmudov & S. Emin (2018). Fractional-order boundary value problems with Katugampola fractional integral conditions. Advances in Difference Equations, 2018(1), Article ID: 81. https://doi.org/10.1186/s13662-018-1538-6. · Zbl 1445.34020 · doi:10.1186/s13662-018-1538-6
[29] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad & S. Rezapour (2021). Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via gener-alized Caputo fractional derivatives. Advances in Difference Equations, 2021(1), 1-18. https: //doi.org/10.1186/s13662-021-03228-9. · Zbl 1487.34028 · doi:10.1186/s13662-021-03228-9
[30] C. Nuchpong, S. K. Ntouyas & J. Tariboon (2020). Boundary value problems of Hilfer-type fractional integro-differential equations and inclusions with nonlocal integro-multipoint boundary conditions. Open Mathematics, 18(1), 1879-1894. https://doi.org/10.1515/ math-2020-0122. · doi:10.1515/math-2020-0122
[31] N. Phuangthong, S. K. Ntouyas, J. Tariboon & K. Nonlaopon (2021). Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclu-sions. Mathematics, 9(6), 615. https://doi.org/10.3390/math9060615. · doi:10.3390/math9060615
[32] I. Podlubny (1999). Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering. Academic Press, New York. · Zbl 0924.34008
[33] A. Salim, M. Benchohra, J. R. Graef & J. E. Lazreg (2020). Boundary value problem for frac-tional order generalized Hilfer-type fractional derivative with non-instantaneous impulses. Fractal and Fractional, 5(1), Article ID: 1. https://doi.org/10.3390/fractalfract5010001. · doi:10.3390/fractalfract5010001
[34] S. Shahid, S. Saifullah, U. Riaz, A. Zada & S. B. Moussa (2023). Existence and stability results for nonlinear implicit random fractional integro-differential equations. Qualitative Theory of Dynamical Systems, 22(2), Article ID: 81. https://doi.org/10.1007/s12346-023-00772-5. · Zbl 1532.45008 · doi:10.1007/s12346-023-00772-5
[35] S. Sitho, S. K. Ntouyas, A. Samadi & J. Tariboon (2021). Boundary value problems for ψ-Hilfer type sequential fractional differential equations and inclusions with integral multi-point boundary conditions. Mathematics, 9(9), Article ID: 1001. https://doi.org/10.3390/ math9091001. · doi:10.3390/math9091001
[36] J. V. D. C. Sousa & E. C. de Oliveira (2019). A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator. Differential Equations & Applications, 11(1), 87-106. http://dx.doi.org/10.7153/dea-2019-11-02. · Zbl 1427.34017 · doi:10.7153/dea-2019-11-02
[37] H. M. Srivastava (2021). Some parametric and argument variations of the operators of frac-tional calculus and related special functions and integral transformations. Journal of Nonlinear and Convex Analysis, 22(8), 1501-1520. · Zbl 1515.26013
[38] H. M. Srivastava (2020). Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Mathematical Journal, 60(1), 73-116. https://doi.org/ 10.5666/KMJ.2020.60.1.73. · Zbl 1453.26008 · doi:10.5666/KMJ.2020.60.1.73
[39] H. M. Srivastava (2021). An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. Journal of Advanced Engi-neering and Computation, 5(3), 135-166. http://dx.doi.org/10.55579/jaec.202153.340. · doi:10.55579/jaec.202153.340
[40] R. Subashini, C. Ravichandran, K. Jothimani & H. M. Baskonus (2020). Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems -Series S, 13(3), 911-923. https://doi.org/10.3934/dcdss.2020053. · Zbl 1450.45006 · doi:10.3934/dcdss.2020053
[41] W. Sudsutad, C. Thaiprayoon & S. K. Ntouyas (2021). Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 6(4), 4119-4141. https://doi.org/10.3934/math.2021244. · Zbl 1525.34032 · doi:10.3934/math.2021244
[42] X. Yu (2015). Existence and β-Ulam-Hyers stability for a class of fractional differential equa-tions with non-instantaneous impulses. Advances in Difference Equations, 2015(1), Article ID: 104. https://doi.org/10.1186/s13662-015-0415-9. · Zbl 1348.34030 · doi:10.1186/s13662-015-0415-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.