×

Estimating survival treatment effects with covariate adjustment using propensity score. (English) Zbl 1503.62085

Summary: Propensity score is widely used to estimate treatment effects in observational studies. The covariate adjustment using propensity score is the most straightforward method in the literature of causal inference. In this article, we estimate the survival treatment effect with covariate adjustment using propensity score in the semiparametric accelerated failure time model. We establish the asymptotic properties of the proposed estimator by simultaneous estimating equations. We conduct simulation studies to evaluate the finite sample performance of the proposed method. A real data set from the German Breast Cancer Study Group is analyzed to illustrate the proposed method.

MSC:

62N05 Reliability and life testing
62D20 Causal inference from observational studies
62N01 Censored data models
62N02 Estimation in survival analysis and censored data
Full Text: DOI

References:

[1] Anderson, P. K.; Gill, R. D., Cox’s regression model for counting processes: a large sample study, Ann. Statist., 10, 1100-1120 (1982) · Zbl 0526.62026
[2] Austin, P. C., An introduction to propensity score methods for reducing the effects of confounding in observational studies, Multivariate Behavioral Research, 46, 399-424 (2011) · doi:10.1080/00273171.2011.568786
[3] Austin, P. C.; Schuster, T., The performance of different propensity score methods for estimating absolute effects of treatments on survival outcomes: A simulation study, Stat. Methods Med. Res., 25, 2214-2237 (2014) · doi:10.1177/0962280213519716
[4] Brown, B. M.; Wang, Y. G., Induced smoothing for rank regression with censored survival times, Stat. Med., 26, 828-836 (2007) · doi:10.1002/sim.2576
[5] Chavez-Macgregor, M.; Giordano, S. H., Randomized clinical trials and observational studies: Is there a battle?, Journal of Clinical Oncology Official, 34, 772-773 (2016) · doi:10.1200/JCO.2015.64.7487
[6] Cho, Y.; Hu, C.; Ghosh, D., Covariate adjustment using propensity scores for dependent censoring problems in the accelerated failure time model, Stat. Med., 37, 390-404 (2018) · doi:10.1002/sim.7513
[7] Cho, Y.; Ghosh, D., Covariate adjustment via propensity scores for recurrent events in the presence of dependent censoring, Communications in Statistics—Theory and Methods, 50, 216-236 (2021) · Zbl 07532115 · doi:10.1080/03610926.2019.1634208
[8] Gatzemeier, W., Therapy of small breast cancer-four-year results of a prospective non-randomized study. German Breast Cancer Study Group (GBSG), Breast Cancer Research and Treatment, 34, 1-13 (1995) · doi:10.1007/BF00666486
[9] Gayat, E.; Resche-Rigon, M.; Mary, J. Y., Propensity score applied to survival data analysis through proportional hazards models: a Monte Carlo study, Pharmaceutical Statistics, 11, 222-229 (2012) · doi:10.1002/pst.537
[10] Hade, E. M.; Lu, B., Bias associated with using the estimated propensity score as a regression covariate, Stat. Med., 33, 74-87 (2014) · doi:10.1002/sim.5884
[11] Hernán, M.; Rubin, J. M., Causal Inference: What If (2020), Boca Raton: Chapman & Hall/CRC, Boca Raton
[12] Imbens, G. W.; Rubin, D. B., Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction (2015), Cambridge: Cambridge University Press, Cambridge · Zbl 1355.62002 · doi:10.1017/CBO9781139025751
[13] Johnson, L. M.; Strawderman, R. L., Induced smoothing for the semiparametric accelerated failure time model: asymptotics and extensions to clustered data, Biometrika, 96, 577-590 (2009) · Zbl 1170.62069 · doi:10.1093/biomet/asp025
[14] Johnston, S. C.; Rootenberg, J. D.; Katrak, S., Effect of a US National Institutes of Health programme of clinical trials on public health and costs, Lancet, 367, 1319-1327 (2006) · doi:10.1016/S0140-6736(06)68578-4
[15] Lai, T. L.; Ying, Z., Rank regression methods for left truncated and right-censored data, Ann. Statist., 19, 531-556 (1991) · Zbl 0739.62031 · doi:10.1214/aos/1176348110
[16] Lu, B.; Cai, D. J.; Wang, L., Inference for proportional hazard model with propensity score, Communications in Statistics—Theory and Methods, 47, 2908-2918 (2018) · Zbl 1508.62261 · doi:10.1080/03610926.2017.1343849
[17] Lunceford, J.; Davidian, M., Stratification and weighting via the propensity score inestimation of causal treatment effects: a comparative study, Stat. Med., 23, 2937-2960 (2004) · doi:10.1002/sim.1903
[18] Mao, H.; Li, L.; Yang, W., On the propensity score weighting analysis with survival outcome: Estimands, estimation, and inference, Stat. Med., 37, 3745-3763 (2018) · doi:10.1002/sim.7839
[19] Pollard, D., Empirical Processes: Theory and Applications (1990), Hayward: Institute of Mathematical Statistics, Hayward · Zbl 0741.60001 · doi:10.1214/cbms/1462061091
[20] Rosenbaum, P. R.; Rubin, D. B., The central role of the propensity score in observational studies for causal effects, Biometrika, 70, 41-55 (1983) · Zbl 0522.62091 · doi:10.1093/biomet/70.1.41
[21] Silverman, S. L., From randomized controlled trials to observational studies, The American Journal of Medicine, 122, 114-120 (2009) · doi:10.1016/j.amjmed.2008.09.030
[22] Tsiatis, A. A., Estimating regression parameters using linear rank tests for censored data, Ann. Statist., 18, 354-372 (1990) · Zbl 0701.62051 · doi:10.1214/aos/1176347504
[23] Tsilidis, K. K.; Kasimis, J. C.; Lopez, D. S., Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies, BMJ, 350, g7607 (2014) · doi:10.1136/bmj.g7607
[24] Vansteelandt, S.; Daniel, R. M., On regression adjustment for the propensity score, Stat. Med., 33, 4053-4072 (2014) · doi:10.1002/sim.6207
[25] Ying, Z., A large sample study of rank estimation for censored regression data, Ann. Statist., 21, 76-99 (1993) · Zbl 0773.62048 · doi:10.1214/aos/1176349016
[26] Yu, J.; Zhou, H.; Cai, J., Accelerated failure time model for data from outcome-dependent sampling, Lifetime Data Anal., 27, 15-37 (2021) · Zbl 07447308 · doi:10.1007/s10985-020-09508-y
[27] Zou, B. M.; Zou, F.; Shuster, J. J., On variance estimate for covariate adjustment by propensity score analysis, Stat. Med., 35, 3537-3548 (2016) · doi:10.1002/sim.6943
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.