×

On representations of the Helmholtz Green’s function. (English) Zbl 1541.81038

Summary: We consider the free space Helmholtz Green’s function and split it into the sum of oscillatory and non-oscillatory (singular) components. The goal is to separate the impact of the singularity of the real part at the origin from the oscillatory behavior controlled by the wave number \(k\). The oscillatory component can be chosen to have any finite number of continuous derivatives at the origin and can be applied to a function in the Fourier space in \(\mathcal{O} (k^d \log k)\) operations. The non-oscillatory component has a multiresolution representation via a linear combination of Gaussians and is applied efficiently in space.
Since the Helmholtz Green’s function can be viewed as a point source, this partitioning can be interpreted as a splitting into propagating and evanescent components. We show that the non-oscillatory component is significant only in the vicinity of the source at distances \(\mathcal{O} (c_1 k^{- 1} + c_2 k^{- 1} \log_{10} k)\), for some constants \(c_1, c_2\), whereas the propagating component can be observed at large distances.

MSC:

81P68 Quantum computation
65M80 Fundamental solutions, Green’s function methods, etc. for initial value and initial-boundary value problems involving PDEs
81Q93 Quantum control
28C20 Set functions and measures and integrals in infinite-dimensional spaces (Wiener measure, Gaussian measure, etc.)

References:

[1] Anderson, J.; Harrison, R. J.; Sundahl, B.; Thornton, W. S.; Beylkin, G., Real-space quasi-relativistic quantum chemistry, Comput. Theor. Chem., 1175, Article 112711 pp., (2020)
[2] Barnett, A. H., Evaluation of layer potentials close to the boundary for Laplace and Helmholtz problems on analytic planar domains, SIAM J. Sci. Comput., 36, 2, A427-A451, (2014) · Zbl 1298.65184
[3] Beylkin, G.; Cheruvu, V.; Pérez, F., Fast adaptive algorithms in the non-standard form for multidimensional problems, Appl. Comput. Harmon. Anal., 24, 3, 354-377, (2008) · Zbl 1139.65078
[4] Beylkin, G.; Cramer, R.; Fann, G. I.; Harrison, R. J., Multiresolution separated representations of singular and weakly singular operators, Appl. Comput. Harmon. Anal., 23, 2, 235-253, (2007) · Zbl 1134.42023
[5] Beylkin, G.; Fann, G.; Harrison, R. J.; Kurcz, C.; Monzón, L., Multiresolution representation of operators with boundary conditions on simple domains, Appl. Comput. Harmon. Anal., 33, 109-139, (2012) · Zbl 1241.42027
[6] Beylkin, G.; Kurcz, C.; Monzón, L., Fast algorithms for Helmholtz Green’s functions, Proc. R. Soc. A, 464, 2100, 3301-3326, (2008) · Zbl 1186.65155
[7] Beylkin, G.; Kurcz, C.; Monzón, L., Fast convolution with the free space Helmholtz Green’s function, J. Comput. Phys., 228, 8, 2770-2791, (2009) · Zbl 1165.65082
[8] Beylkin, G.; Mohlenkamp, M. J., Algorithms for numerical analysis in high dimensions, SIAM J. Sci. Comput., 26, 6, 2133-2159, , (, J, u, l, y, , 2, 0, 0, 5, ) · Zbl 1085.65045
[9] Beylkin, G.; Mohlenkamp, M. J.; Pérez, F., Approximating a wavefunction as an unconstrained sum of Slater determinants, J. Math. Phys., 49, 3, Article 032107 pp., (2008) · Zbl 1153.81322
[10] Beylkin, G.; Monzón, L., Approximation of functions by exponential sums revisited, Appl. Comput. Harmon. Anal., 28, 2, 131-149, (2010) · Zbl 1189.65035
[11] Beylkin, G.; Monzón, L.; Yang, X., Adaptive algorithm for electronic structure calculations using reduction of Gaussian mixtures, Proc. R. Soc. A, 475, 2226, Article 20180901 pp., (2019) · Zbl 1472.92351
[12] Gel’fand, I. M.; Shilov, G. E., Generalized Functions. Vol. 1: Properties and Operations, (1964), Academic Press: Academic Press New York, Translated from the Russian by Eugene Saletan · Zbl 0115.33101
[13] Gradshteyn, I. S.; Ryzhik, I. M.; Jeffrey, A.; Zwillinger, D., Table of Integrals, Series, and Products, (2007), Academic Press · Zbl 1208.65001
[14] Grafakos, L., Classical and Modern Fourier Analysis, (2004), Pearson Education, Inc. · Zbl 1148.42001
[15] Greengard, L.; Strain, J., The fast Gauss transform, SIAM J. Sci. Stat. Comput., 12, 1, 79-94, (1991) · Zbl 0721.65089
[16] Greengard, L.; Sun, X., A new version of the fast Gauss transform, (Proceedings of the International Congress of Mathematicians, vol. III (Extra vol.), (1998)), 575-584 · Zbl 0908.65126
[17] Harrison, R. J.; Beylkin, G.; Bischoff, F. A.; Calvin, J. A.; Fann, G. I.; Fosso-Tande, J.; Galindo, D.; Hammond, J. R.; Hartman-Baker, R.; Hill, J. C.; Jia, J.; Kottmann, J. S.S.; Ou, M-J. Y.; Ratcliff, L. E.; Reuter, M. G.; Richie-Halford, A. C.; Romero, N. A.; Sekino, H.; Shelton, W. A.; Sundahl, B. E.; Thornton, W. S.; Valeev, E. F.; Vázquez-Mayagoitia, A.; Vence, N.; Yokoi, Y., MADNESS: a multiresolution, adaptive numerical environment for scientific simulation, SIAM J. Sci. Comput., 38, 5, S123-S142, (2016) · Zbl 1365.65327
[18] Harrison, R. J.; Fann, G. I.; Yanai, T.; Gan, Z.; Beylkin, G., Multiresolution quantum chemistry: basic theory and initial applications, J. Chem. Phys., 121, 23, 11587-11598, (2004)
[19] Jiang, S.; Greengard, L., A dual-space multilevel kernel-splitting framework for discrete and continuous convolution, (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.