×

Numerical simulation of phase field model for spherulite growth of semi-crystalline polymers using FD-FV-LB method. (English) Zbl 1538.76137

Summary: Based on the existing improved phase-field model for polymer crystallization, the spherulitic morphologies are numerically simulated. The model consists of a second-order phase field equation and a two-dimensional heat conduction equation for coupled flow field. Our strategy is to use the finite difference method (FDM) for discretization of the phase field equation, finite volume method (FVM) for solving the energy equation, and lattice Boltzmann method (LBM) for simulation of melt flow, respectively. The shape level set function(LS) is adopted to represent the crystal interface at each moment with certain boundary conditions imposed on the solution region. In simple and complex cavities, the growth of single and multiple spherulites is simulated with different temperature boundary conditions and different flow fields, respectively. The numerical results illustrate that the growth morphologies of the crystals vary with the temperature boundaries. When the boundary temperature is greater than or near melting point Tm, the growth of crystals at the boundary is inhibited. When the boundary temperature is lower, the crystals at the boundary grow more tightly, and eventually forming a crystal wall. The lower the boundary temperature, the thicker the crystal wall is. In addition, the flow velocity has an important influence on the crystal morphologies, and the crystal grows fast towards the upstream direction. However, with the increase of crystallization time, the phenomenon of asymmetric growth becomes not obvious.

MSC:

76M28 Particle methods and lattice-gas methods
80A19 Diffusive and convective heat and mass transfer, heat flow
76D99 Incompressible viscous fluids
76M99 Basic methods in fluid mechanics
82D25 Statistical mechanics of crystals
82D60 Statistical mechanics of polymers
74N25 Transformations involving diffusion in solids
Full Text: DOI

References:

[1] Wang, D.; Shi, T. F.; Chen, J. Z., Simulated morphological landscape of polymer single crystals by phase field model, J. Chem. Phys., 129, Article 194903 pp. (2008)
[2] Wang, X. D.; Ouyang, J.; Su, J., Phase field modeling of the ring-banded spherulites of crystalline polymers: the role of thermal diffusion, Chin. Phys. B, 23, Article 126103 pp. (2014)
[3] Huang, T.; Kamal, M. R., Morphological modeling of polymer solidification, Polym. Eng. Sci., 40, 1796-1808 (2000)
[4] Waals, Jdvd, The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density, J. Stat. Phys., 20, 200-244 (1979) · Zbl 1245.82006
[5] Gránásysy, L.; Pusztai, T.; Tegze, G., Growth and form of spherulites, Phys. Rev. E, 72, Article 011605 pp. (2005)
[6] Xu, H. J.; Matkar, R.; Kyu, T., Phase-field modeling on morphological landscape of isotactic polystyrene single crystals, Phys. Rev. E, 72, Article 011804 pp. (2005)
[7] Wang, X. D.; Ouyang, J.; Su, J., A phase-field model for simulating various spherulite morphologies of semi-crystalline polymers, Chin. Phys. B, 22, 10, Article 106103 pp. (2013)
[8] Yang, B. X.; Zhang, C. H.; Wang, F., A modified phase-field model for polymer crystal growth, Chin. J. Chem. Phys., 30, 5, 538-546 (2017)
[9] Yang, X. L.; Chen, J. B.; Qiu, B. W., Simulation of crystallization of isotactic polypropylene with different shear regimes, Poly. Mater. Sci. Eng., 26, 2, 167-170 (2010)
[10] Spina, R.; Spekowius, M.; Hopmann, C., Simulation of crystallization of isotactic polypropylene with different shear regimes, Thermochim. Acta, 659, 10, 44-54 (2018)
[11] Rong, Y.; He, H. P.; Cao, W., Multi-scale molding and numerical simulation of the flow-induced crystallization of polymer, Comput. Mater. Sci., 67, 35-39 (2013)
[12] Mu, Y.; Zhao, G. Q.; Chen, A. B., Numerical investigation of the crystallization andorientation behavior in polymer processing with a two-phase model, Comput. Chem. Eng., 63, 91-107 (2014)
[13] Wang, X. D.; Ouyang, J.; Zhou, W., A phase field technique for modeling and predicting flow inducedcrystallization morphology of semi-crystalline polymers, Polymers, 8, 6, 230 (2016)
[14] Wang, X. D.; Ouyang, J.; Liu, Y., Prediction of flow effect on crystal growth of semi-crystalline polymers using a multi-scale phase-field approach, Polymers, 9, 12, 634 (2017)
[15] Lee, J.; Duenweg, B.; Schumacher, J., Multiscale modelling strategy using the lattice Boltzmann method for polymer dynamics in a turbulent flow, Comput. Math., 59, 7, 2374-2379 (2010) · Zbl 1193.82041
[16] Zhang, J. F., Lattice Boltzmann method for microfluidics: models and applications, Microfluid. Nanofluid., 10, 1, 1-28 (2011)
[17] Sun, D. K.; Pan, S. Y.; Han, Q. Y., Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme, Int. J. Heat Mass Transf., 103, 821-831 (2016)
[18] Ibrahem, A. M.; El-Amin, M. F.; Mohammadein, A. A., Lattice Boltzmann technique for heat transport phenomena coupled with melting process, Heat Mass Transf., 53, 213-221 (2017)
[19] Young, W. B., Lattice Boltzmann simulation of polymer melt flow with a low Reynolds number, Int. J. Heat Mass Transf., 115, 784-792 (2017)
[20] Li, Q.; Zhang, T.; Yuan, J. Y., Numerical simulation of polymer crystal growth under flow field using a coupled phase-field and lattice Boltzmann method, Appl. Math. Comput., 387, Article 124302 pp. (2020)
[21] Tao, W. Q., Numerical Heat Transfer (2001), Xi’an Jiaotong University Press: Xi’an Jiaotong University Press Xi’an, (in Chinese)
[22] Toh, K. C.; Chen, X. Y.; Chai, J. C., Numerical computation of fluid flow and heat transfer in microchannels, Int. J. Heat Mass Transf., 45, 26, 5133-5141 (2002) · Zbl 1008.76519
[23] Benzi, R.; Succi, S.; Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Rep., 222, 3, 145-197 (1992)
[24] Xu, H. J.; Chiu, H. W.; Okabe, Y., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 1, 329-364 (1998) · Zbl 1398.76180
[25] Chen, S. Y.; Doolen, G. D., Breakup of spiral and concentric ringed spherulites in polymer crystallization, Phys. Rev. E, 74, 1, Article 011801 pp. (2006)
[26] Harrowell, E. R.; Oxtoby, D. W., On the interaction between order and a moving interface: dynamical disordering and anisotropic growth rates, J. Chem. Phys., 86, 5, 2932-2942 (1987)
[27] Kyu, T.; Chiu, H. W.; Guenthner, A. J., Rhythmic growth of target and spiral spherulites of crystalline polymer blends, Phys. Rev. Lett., 83, 14, 2749-2752 (1999)
[28] Kobayashi, R., Modeling and numerical simulations of dendritic crystal growth, Physica D, 63, 3, 410-423 (1993) · Zbl 0797.35175
[29] Zhou, D.; Shi, A. C.; Zhang, P., Numerical simulation of phase separation coupled with crystallization, J. Chem. Phys., 129, Article 154901 pp. (2008)
[30] Patankar, Suhas, Numerical Heat Transfer and Fluid Flow (2018), CRC Press · Zbl 0521.76003
[31] Chiappini, D., A lattice-Boltzmann free surface model for injection moulding of a non-Newtonian fluid, Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci., 378, Article 20190407 pp. (2020) · Zbl 1470.76018
[32] Zare, Y.; Park, S. P.; Rhee, K. Y., Analysis of complex viscosity and shear thinning behavior in poly (lactic acid)/poly (ethylene oxide)/carbon nanotubes biosensor based on Carreau-Yasuda model, Results Phys., 13, Article 102245 pp. (2019)
[33] Runa, S.; Himadri, C.; Chandan, G., A review on the application of lattice Boltzmann method for melting and solidification problems, Comput. Mater. Sci., 206, Article 111288 pp. (2022)
[34] Chen, S. Y.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30, 329-364 (1998) · Zbl 1398.76180
[35] Liao, J., Phase field model for solidification with boundary interface interaction, Int. Front. Sci. Lett., 9, 1-8 (2016)
[36] Olsson, E.; Kreiss, G., A conservative level set method for two phase flow, J. Comput. Phys., 210, 1, 225-246 (2005) · Zbl 1154.76368
[37] Li, Q.; Qu, F. C., A level set based immersed boundary method for simulation of non-isothermal viscoelastic melt filling process, Chin. J. Chem. Eng., 32, 119-133 (2021)
[38] waclawczyk, T., On a relation between the volume of fluid, level-set and phase field interface models, Int. J. Multiph. Flow, 97, 60-77 (2017)
[39] Yin, X. W.; Zhang, J. F., An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method, J. Comput. Phys., 231, 11, 4295-4303 (2012) · Zbl 1426.76622
[40] Wang, X. D.; Zhang, H. X.; Zhou, W., 3D phase-field model for simulating the crystal growth of semi-crystalline polymers, Int. J. Heat Mass Transf., 115, 194-205 (2017)
[41] Xu, H. J.; Keawwattana, W.; Kyu, T., Effect of thermal transport on spatiotemporal emergence of lamellar branching morphology during polymer spherulitic growth, J. Chem. Phys., 123, Article 124908 pp. (2005)
[42] Wang, D.; Jin, Z. K.; Xing, Y., Simulated rhythmic growth of targeted single crystal by polymer phase-field model, Comput. Mater. Sci., 68, 23-26 (2013)
[43] Taguchi, K.; Miyaji, H.; Izumi, K., Growth shape of isotactic polystyrene crystals in thin films, Polymer, 42, 17, 7443-7447 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.