×

An efficient unified iterative scheme for moving boundaries in lattice Boltzmann method. (English) Zbl 1390.76721

Summary: The lattice Boltzmann equation (LBE) is an efficient kinetic method for particulate flows. Two key issues should be addressed in the implementation of LBE for such systems, i.e., how to treat the curved surface of a solid particle on a uniform Cartesian grid, and how to initialize the state of a fresh node coming from the moving particle. These two key issues are usually considered separately in previous studies. In this work, we propose an efficient unified iterative scheme (UIS) to treat both the issues simultaneously. On one hand, the present method provides a consistent treatment for both the boundary nodes and fresh nodes, on the other hand, to enforce the no-slip boundary condition and decrease the inconsistency between the constructed distribution functions and those evolutionary ones, an enforced iteration (EI) is employed. To describe the inconsistency quantitatively, the inconsistency degree is defined. Simulations of several typical problems are conducted, and the numerical accuracy, computational efficiency and ability to treat moving boundaries are validated. Compared with the combination method, the inconsistency degree around the moving body and spurious force fluctuation are suppressed significantly due to the improved consistency.

MSC:

76M28 Particle methods and lattice-gas methods
76T20 Suspensions

Software:

Proteus
Full Text: DOI

References:

[1] Cook, B. K.; Noble, D. R.; Williams, J. R., A direct simulation method for particle-fluid systems, Eng Comput, 21, 151-168, (2004) · Zbl 1062.76553
[2] Feng, Z. G.; Michaelides, E. E., Proteus: a direct forcing method in the simulations of particulate flows, J Comput Phys, 202, 20-51, (2005) · Zbl 1076.76568
[3] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 1. theoretical foundation, J Fluid Mech, 271, 285-309, (1994) · Zbl 0815.76085
[4] Ladd, A. J.C., Numerical simulations of particulate suspensions via a discretized Boltzmann equation. part 2. numerical results, J Fluid Mech, 271, 311-339, (1994) · Zbl 0815.76085
[5] Chen, S.; Doolen, G. D., Lattice Boltzmann method for fluid flows, Annu Rev Fluid Mech, 30, 329-364, (1998) · Zbl 1398.76180
[6] Qi, D., Lattice-Boltzmann simulations of particles in non-zero-Reynolds-number flows, J Fluid Mech, 385, 41-62, (1999) · Zbl 0938.76089
[7] Ladd, A. J.C.; Verberg, R., Lattice-Boltzmann simulations of particle-fluid suspensions, J Stat Phys, 104, 1191-1251, (2001) · Zbl 1046.76037
[8] Feng, Z. G.; Michaelides, E. E., Robust treatment of no-slip boundary condition and velocity updating for the lattice-Boltzmann simulation of particulate flows, Comput Fluids, 38, 370-381, (2009) · Zbl 1237.76137
[9] Xia, Z.; Connington, K. W.; Rapaka, S.; Yue, P.; Feng, J. J.; Chen, S., Flow patterns in the sedimentation of an elliptical particle, J Fluid Mech, 625, 249-272, (2009) · Zbl 1171.76362
[10] Aidun, C. K.; Clausen, J. R., Lattice-Boltzmann method for complex flows, Annu Rev Fluid Mech, 42, 439-472, (2010) · Zbl 1345.76087
[11] Wang, L.; Guo, Z. L.; Mi, J. C., Drafting, kissing and tumbling process of two particles with different sizes, Comput Fluids, 96, 20-34, (2014) · Zbl 1391.76796
[12] Peng, C.; Teng, Y.; Hwang, B.; Guo, Z.; Wang, L., Implementation issues and benchmarking of lattice Boltzmann method for moving rigid particle simulations in a viscous flow, Comput Math Appl, 72, 349-374, (2016) · Zbl 1358.76061
[13] Tao, S.; Hu, J.; Guo, Z., An investigation on momentum exchange methods and refilling algorithms for lattice Boltzmann simulation of particulate flows, Comput Fluids, 133, 1-14, (2016) · Zbl 1390.76771
[14] Yin, X.; Zhang, J., An improved bounce-back scheme for complex boundary conditions in lattice Boltzmann method, J Comput Phys, 231, 4295-4303, (2012) · Zbl 1426.76622
[15] Zhang, L.; Zeng, Z.; Xie, H., An alternative second order scheme for curved boundary condition in lattice Boltzmann method, Comput Fluids, 114, 193-202, (2015) · Zbl 1390.76791
[16] Filippova, O.; Hänel, D., Grid refinement for lattice-BGK models, J Comput Phys, 147, 219-228, (1998) · Zbl 0917.76061
[17] Mei, R.; Luo, L. S.; Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J Comput Phys, 155, 307-330, (1999) · Zbl 0960.82028
[18] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys Fluids, 13, 3452-3459, (2001) · Zbl 1184.76068
[19] Guo, Z.; Zheng, C.; Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys Fluids, 14, 2007-2010, (2002) · Zbl 1185.76156
[20] Yu, D.; Mei, R.; Shyy, W., A unified boundary treatment in lattice Boltzmann method, 953, 2003, (2003), AIAA New York
[21] Ginzburg, I.; d’Humiéres, D., Multireflection boundary conditions for lattice Boltzmann models, Phys Rev E, 68, 066614, (2003)
[22] Lallemand, P.; Luo, L. S., Lattice Boltzmann method for moving boundaries, J Comput Phys, 184, 406-421, (2003) · Zbl 1062.76555
[23] Li, H.; Fang, H.; Lin, Z., Lattice Boltzmann simulation on particle suspensions in a two-dimensional symmetric stenotic artery, Phys Rev E, 69, 031919, (2004)
[24] Mei, R.; Luo, L. S.; Lallemand, P., Consistent initial conditions for lattice Boltzmann simulations, Comput Fluids, 35, 855-862, (2006) · Zbl 1177.76319
[25] Caiazzo, A., Analysis of lattice Boltzmann nodes initialisation in moving boundary problems, Prog Comput Fluid Dyn Int J, 8, 3-10, (2008) · Zbl 1187.76723
[26] Chen, L.; Yu, Y.; Lu, J., A comparative study of lattice Boltzmann methods using bounce-back schemes and immersed boundary ones for flow acoustic problems, Int J Numer Methods Fluids, 74, 439-467, (2014) · Zbl 1455.76168
[27] Cate, A.; Nieuwstad, C. H.; Derksen, J. J., Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity, Phys Fluids, 14, 4012-4025, (2002) · Zbl 1185.76073
[28] Rohde, M.; Kandhai, D.; Derksen, J. J., Improved bounce-back methods for no-slip walls in lattice-Boltzmann schemes: theory and simulations, Phys Rev E, 67, 066703, (2003)
[29] Lallemand, P.; Luo, L. S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys Rev E, 61, 6546, (2000)
[30] Luo, L. S.; Liao, W.; Chen, X., Numerics of the lattice Boltzmann method: effects of collision models on the lattice Boltzmann simulations, Phys Rev E, 83, 056710, (2011)
[31] Qian, Y. H.; d’Humiéres, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys Lett, 17, 479, (1992) · Zbl 1116.76419
[32] Wen, B.; Zhang, C.; Tu, Y., Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations, J Comput Phys, 266, 161-170, (2014) · Zbl 1362.76044
[33] Caiazzo, A., Analysis of lattice Boltzmann initialization routines, J Stat Phys, 121, 37-48, (2005) · Zbl 1108.76087
[34] Aidun, C. K.; Lu, Y., Lattice Boltzmann simulation of solid particles suspended in fluid, J Stat Phys, 81, 49-61, (1995) · Zbl 1106.82342
[35] Ding, E. J.; Aidun, C. K., Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact, J Stat Phys, 112, 685-708, (2003) · Zbl 1035.82024
[36] Wang, L.; Guo, Z.; Shi, B.; Zheng, C., Evaluation of three lattice Boltzmann models for particulate flows, Commun Comput Phys, 13, 1151-1172, (2013) · Zbl 1373.76271
[37] Happel, J.; Brenner, H., Low Reynolds number hydrodynamics with special application to particulate media: John happel, (1965), Howard Brenner. Prentice-Hall
[38] Dorschner, B.; Chikatamarla, S. S.; Bösch, F., Grad’s approximation for moving and stationary walls in entropic lattice Boltzmann simulations, J Comput Phys, 295, 340-354, (2015) · Zbl 1349.76676
[39] Feng, J.; Hu, H. H.; Joseph, D. D., Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. part 1. sedimentation, J Fluid Mech, 261, 95-134, (1994) · Zbl 0800.76114
[40] Choi, C.; Yoon, H. S.; Ha, M. Y., Flow and motion characteristics of a freely falling square particle in a channel, Comput Fluids, 79, 1-12, (2013) · Zbl 1284.76285
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.