×

Stability analysis method for periodic delay differential equations with multiple distributed and time-varying delays. (English) Zbl 1459.70042

Summary: Dynamic stability problems leading to delay differential equations (DDEs) are found in many different fields of science and engineering. In this paper, a method for stability analysis of periodic DDEs with multiple distributed and time-varying delays is proposed, based on the well-known semidiscretization method. In order to verify the correctness of the proposed method, two typical application examples, i.e., milling process with a variable helix cutter and milling process with variable spindle speed, which can be, respectively, described by DDEs with the multidistributed and time-varying delays are considered. Then, comparisons with prior methods for stability prediction are made to verify the accuracy and efficiency of the proposed approach. As far as the milling process is concerned, the proposed method supplies a generalized algorithm to analyze the stability of the single milling systems associated with variable pith cutter, variable helix cutter, or variable spindle speed; it also can be utilized to analyze the combined systems of the aforementioned cases.

MSC:

70J25 Stability for problems in linear vibration theory
34K20 Stability theory of functional-differential equations
93D20 Asymptotic stability in control theory
34K60 Qualitative investigation and simulation of models involving functional-differential equations
93C23 Control/observation systems governed by functional-differential equations
Full Text: DOI

References:

[1] Bhatt, S. J.; Hsu, C. S., Stability criteria for second-order dynamical systems with time lag, Journal of Applied Mechanics, 33, 1, 113-118 (1966) · Zbl 0143.10503 · doi:10.1115/1.3624967
[2] Olgac, N.; Ergenc, A. F.; Sipahi, R., “Delay scheduling”: a new concept for stabilization in multiple delay systems, Journal of Vibration and Control, 11, 9, 1159-1172 (2005) · Zbl 1182.70032 · doi:10.1177/1077546305055777
[3] Wahi, P.; Chatterjee, A., Galerkin projections for delay differential equations, Journal of Dynamic Systems, Measurement, and Control, 127, 1, 80-87 (2005) · doi:10.1115/1.1870042
[4] Liu, L.; Kalmar-Nagy, T., High dimensional harmonic balance analysis for second-order delay-differential equations, Journal of Vibration and Control, 16, 7-8, 1189-1208 (2010) · Zbl 1269.70026 · doi:10.1177/1077546309341134
[5] Butcher, E. A.; Ma, H.; Bueler, E.; Averina, V.; Szabo, Z., Stability of linear time-periodic delay-differential equations via Chebyshev polynomials, International Journal for Numerical Methods in Engineering, 59, 7, 895-922 (2004) · Zbl 1065.70002 · doi:10.1002/nme.894
[6] Yi, S.; Nelson, P.; Ulsoy, A. G., Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter, Mathematical Biosciences and Engineering : MBE, 4, 2, 355-368 (2007) · Zbl 1131.34056 · doi:10.3934/mbe.2007.4.355
[7] Bayly, P. V.; Halley, J. E.; Mann, B. P.; Davies, M. A., Stability of interrupted cutting by temporal finite element analysis, Journal of Manufacturing Science and Engineering, 125, 2, 220-225 (2003) · doi:10.1115/1.1556860
[8] Insperger, T.; Stépán, G., Semi-discretization method for delayed systems, International Journal for Numerical Methods in Engineering, 55, 5, 503-518 (2002) · Zbl 1032.34071 · doi:10.1002/nme.505
[9] Insperger, T.; Stepan, G., Updated semi-discretization method for periodic delay-differential equations with discrete delay, International Journal for Numerical Methods in Engineering, 61, 114-141 (2004) · Zbl 1083.70002 · doi:10.1002/nme.1061
[10] Insperger, T.; Stepan, G., Semi-Discretization for Time-Delay Systems Stability and Engineering Applications (Applied Mathematical Sciences) (2011), New York, NY, USA: Springer-Verlag, New York, NY, USA · Zbl 1245.93004
[11] Ding, Y.; Zhu, L.; Zhang, X.; Ding, H., A full-discretization method for prediction of milling stability, International Journal of Machine Tools and Manufacture, 50, 5, 502-509 (2010) · doi:10.1016/j.ijmachtools.2010.01.003
[12] Khasawneh, F. A.; Mann, B. P., Stability of delay integro-differential equations using a spectral element method, Mathematical and Computer Modelling, 54, 9-10, 2493-2503 (2011) · Zbl 1235.65084 · doi:10.1016/j.mcm.2011.06.009
[13] Lehotzky, D.; Inspergera, T.; Stepan, G., Extension of the spectral element method for stability analysis of time-periodic delay-differential equations with multiple and distributed delays, Communications in Nonlinear Science and Numerical Simulation, 35, 177-189 (2016) · Zbl 1510.65133 · doi:10.1016/j.cnsns.2015.11.007
[14] Chartbupapan, W.; Bagdasar, O.; Mukdasai, K., A novel delay-dependent asymptotic stability conditions for differential and riemann-liouville fractional differential neutral systems with constant delays and nonlinear perturbation, Mathematics, 8, 1, 1-10 (2020) · doi:10.3390/math8010082
[15] Singkibud, P.; Hiep, L. T.; Niamsup, P.; Botmart, T.; Mukdasai, K., Delay-dependent robust H_∞ performance for uncertain neutral systems with mixed time-varying delays and nonlinear perturbations, Mathematical Problems in Engineering, 2018 (2018) · Zbl 1427.93096 · doi:10.1155/2018/5721695
[16] Chartbupapan, W.; Botmart, T.; Mukdasai, K.; Kaewbanjak, N., Non-differentiable delay-interval-dependent exponentially passive conditions for neutral integro-differential equations with time-varying delays, Thai Journal of Mathematics, 18, 232-250 (2020)
[17] Altintas, Y., Manufacturing Automation (2012), New York, NY, USA: Cambridge University Press, New York, NY, USA
[18] Altintas, Y.; Engin, S.; Budak, E., Analytical stability prediction and design of variable pitch cutters, Journal of Manufacturing Science and Engineering-Transactions of the ASME, 121, 2, 173-179 (1999) · doi:10.1115/1.2831201
[19] Budak, E., An analytical design method for milling cutters with nonconstant pitch to increase stability, part I: theory, Journal of Manufacturing Science and Engineering, 125, 1, 29-34 (2003) · doi:10.1115/1.1536655
[20] Olgac, N.; Sipahi, R., Dynamics and stability of variable-pitch milling, Journal of Vibration and Control, 13, 7, 1031-1043 (2007) · Zbl 1182.70029 · doi:10.1177/1077546307078754
[21] Wan, M.; Zhang, W.-H.; Dang, J.-W.; Yang, Y., A unified stability prediction method for milling process with multiple delays, International Journal of Machine Tools and Manufacture, 50, 1, 29-41 (2010) · doi:10.1016/j.ijmachtools.2009.09.009
[22] Zhang, X.; Xiong, C.; Ding, Y.; Xiong, Y., Variable-step integration method for milling chatter stability prediction with multiple delays, Science China Technological Sciences, 54, 12, 3137-3154 (2011) · Zbl 1239.74035 · doi:10.1007/s11431-011-4599-2
[23] Jin, G.; Qi, H.; Cai, Y.; Zhang, Q., Stability prediction for milling process with multiple delays using an improved semi-discretization method, Mathematical Methods in the Applied Sciences, 39, 4, 949-958 (2016) · Zbl 1338.34160 · doi:10.1002/mma.3543
[24] Jin, G.; Qi, H.; Li, Z.; Han, J.; Li, H., A method for stability analysis of periodic delay differential equations with multiple time-periodic delays, Mathematical Problems in Engineering, 2017 (2017) · Zbl 1426.93269 · doi:10.1155/2017/9490142
[25] Sellmeier, V.; Denkena, B., Stable islands in the stability chart of milling processes due to unequal tooth pitch, International Journal of Machine Tools and Manufacture, 51, 2, 152-164 (2011) · doi:10.1016/j.ijmachtools.2010.09.007
[26] Turner, S.; Merdol, D.; Altintas, Y.; Ridgway, K., Modelling of the stability of variable helix end mills, International Journal of Machine Tools and Manufacture, 47, 9, 1410-1416 (2007) · doi:10.1016/j.ijmachtools.2006.08.028
[27] Dombovari, Z.; Altintas, Y.; Stepan, G., The effect of serration on mechanics and stability of milling cutters, International Journal of Machine Tools and Manufacture, 50, 6, 511-520 (2010) · doi:10.1016/j.ijmachtools.2010.03.006
[28] Dombovari, Z.; Stepan, G., The effect of helix angle variation on milling stability, Journal of Manufacturing Science and Engineering, 134, 5 (2012) · doi:10.1115/1.4007466
[29] Sims, N. D.; Mann, B.; Huyanan, S., Analytical prediction of chatter stability for variable pitch and variable helix milling tools, Journal of Sound and Vibration, 317, 3-5, 664-686 (2008) · doi:10.1016/j.jsv.2008.03.045
[30] Yusoff, A. R.; Sims, N. D., Optimisation of variable helix tool geometry for regenerative chatter mitigation, International Journal of Machine Tools and Manufacture, 51, 2, 133-141 (2011) · doi:10.1016/j.ijmachtools.2010.10.004
[31] Jin, G.; Zhang, Q.; Hao, S.; Xie, Q., Stability prediction of milling process with variable pitch and variable helix cutters, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 2, 281-293 (2014) · doi:10.1177/0954406213486381
[32] Jin, G.; Zhang, Q.; Qi, H.; Yan, B., A frequency-domain solution for efficient stability prediction of variable helix cutters milling, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 15, 2702-2710 (2014) · doi:10.1177/0954406214522614
[33] Seguy, S.; Insperger, T.; Arnaud, L.; Dessein, G.; Peign, G., On the stability of high-speed milling with spindle speed variation, The International Journal of Advanced Manufacturing Technology, 48, 9-12, 883-895 (2010) · doi:10.1007/s00170-009-2336-9
[34] Jin, G.; Qi, H.; Li, Z.; Han, J., Dynamic modeling and stability analysis for the combined milling system with variable pitch cutter and spindle speed variation, Communications in Nonlinear Science and Numerical Simulation, 63, 38-56 (2018) · Zbl 1509.70005 · doi:10.1016/j.cnsns.2018.03.004
[35] Insperger, T.; Stepan, G.; Hartung, F.; Turi, J., State dependent regenerative delay in milling processes, Proceedings of the ASME 2005: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference · doi:10.1115/detc2005-85282
[36] Insperger, T., Full-discretization and semi-discretization for milling stability prediction: some comments, International Journal of Machine Tools and Manufacture, 50, 7, 658-662 (2010) · doi:10.1016/j.ijmachtools.2010.03.010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.