×

Information geometric characterization of the complexity of fractional Brownian motions. (English) Zbl 1293.60047

Summary: The complexity of the fractional Brownian motions is investigated from the viewpoint of information geometry. By introducing a Riemannian metric on the space of their power spectral densities, the geometric structure is achieved. Based on the general construction, for an example, whose power spectral density is obtained by use of the normalized Mexican hat wavelet, we show its information geometric structures, e.g., the dual connections, the curvatures, and the geodesics. Furthermore, the instability of the geodesic spreads on this manifold is analyzed via the behaviors of the length between two neighboring geodesics, the average volume element as well as the divergence (or instability) of the Jacobi vector field. Finally, the Lyapunov exponent is obtained.{
©2012 American Institute of Physics}

MSC:

60G22 Fractional processes, including fractional Brownian motion
94A17 Measures of information, entropy
53B21 Methods of local Riemannian geometry
53C22 Geodesics in global differential geometry
65C60 Computational problems in statistics (MSC2010)
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
Full Text: DOI

References:

[1] Amari S., Differential Geometrical Methods in Statistics (1990) · Zbl 0701.62008
[2] DOI: 10.1007/BF01692059 · Zbl 0632.93017 · doi:10.1007/BF01692059
[3] Amari S., Methods of Information Geometry (2000) · Zbl 0960.62005
[4] Bochner S., Fourier Transforms (1949)
[5] Bracewell R. N., The Fourier Transform and its Applications, 3. ed. (2000) · Zbl 0149.08301
[6] DOI: 10.1016/j.physd.2007.07.001 · Zbl 1129.53019 · doi:10.1016/j.physd.2007.07.001
[7] DOI: 10.1016/j.amc.2010.08.028 · Zbl 1202.94167 · doi:10.1016/j.amc.2010.08.028
[8] DOI: 10.1007/978-1-4757-2201-7 · doi:10.1007/978-1-4757-2201-7
[9] DOI: 10.1103/PhysRevE.54.5969 · doi:10.1103/PhysRevE.54.5969
[10] DOI: 10.1016/S0370-1573(00)00069-7 · doi:10.1016/S0370-1573(00)00069-7
[11] Chentsov N. N., Statistical Decision Rules and Optimal Inference (1982) · Zbl 0484.62008
[12] Chui C. K., An Introduction to Wavelets (1992) · Zbl 0925.42016
[13] DOI: 10.1137/1.9781611970104 · Zbl 0776.42018 · doi:10.1137/1.9781611970104
[14] T. Dieker, ”Simulation of fractional Brownian motion,” Masters Thesis, Department of Mathematical Sciences, University of Twente, The Netherlands, 2004.
[15] DOI: 10.1214/aos/1176343282 · Zbl 0321.62013 · doi:10.1214/aos/1176343282
[16] Felice F. de, Relativity on Curved Manifolds (1990) · Zbl 0705.53001
[17] DOI: 10.1109/18.42195 · doi:10.1109/18.42195
[18] Mandelbrot B. B., Fractal Geometry of Nature (1984) · Zbl 0925.28001
[19] DOI: 10.1137/1010093 · Zbl 0179.47801 · doi:10.1137/1010093
[20] Misner C. W., Gravitation (1973)
[21] Newland D. E., An Introduction to Random Vibrations, Spectral and Wavelet Analysis (1993) · Zbl 0588.70001
[22] DOI: 10.1155/2011/710274 · Zbl 1232.37034 · doi:10.1155/2011/710274
[23] DOI: 10.1016/j.aim.2011.02.002 · Zbl 1257.53024 · doi:10.1016/j.aim.2011.02.002
[24] Petersen P., Riemannian Geometry, 2. ed. (2006)
[25] DOI: 10.1007/978-1-4612-0919-5_16 · doi:10.1007/978-1-4612-0919-5_16
[26] Sun H., Adv. Math. 40 pp 257– (2011)
[27] Tanaka F., Tensor. 64 pp 131– (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.