×

Structure of annihilators of powers. (English) Zbl 1515.16034

Let \(R\) be an associative ring. A ring \(R\) is said to be right APIP if the right annihilator of any nonzero element \(a\) in \(R\) contains the principal ideal of \(R\) generated by some power of any right zero-divisor of \(a\), equivalently, \(ab = 0\) for \(a,b\in R\) implies \(Rb^mR\subseteq r_R(a) \) (i.e., \(aRb^m=0\)) for some \(m\geq 1\). The left APIP can be defined by symmetry.
In this manuscript, the authors investigate the structure of rings with two conditions. First, the right annihilator of some power of any element is an ideal. Second, the right annihilator of any nonzero element \(a\) contains an ideal generated by some power of any right zero-divisor of the element \(a\). Additionally they establish that these conditions are shown to be not right-left symmetric. For a prime two-sided APIP ring \(R\), the authors prove that every element of \(R\) is either nilpotent or regular, and that if \(R\) is of bounded index of nilpotency then \(R\) is a domain. Also, they provide a variety of interesting examples that describe the classes of rings related to these properties.

MSC:

16U80 Generalizations of commutativity (associative rings and algebras)
Full Text: DOI

References:

[1] Bell HE. Near-rings in which each element is a power of itself. Bulletin of the Australian Mathematical Society 1970; 2 (3): 363-368. doi: 10.1017/S0004972700042052 · Zbl 0191.02902 · doi:10.1017/S0004972700042052
[2] Chatters AW, Hajarnavis CR. Rings with Chain Conditions. Pitman Advanced Publishing Program, Boston, London, Melbourne, 1980. · Zbl 0446.16001
[3] Chen W. On π -semicommutative rings. Journal of Mathematical Research with Applications 2016; 36 (4): 423-431. doi: 10.3770/j.issn:2095-2651.2016.04.004 · Zbl 1374.16091 · doi:10.3770/j.issn:2095-2651.2016.04.004
[4] Cheon JS, Kim HK, Kim NK, Lee CI, Lee Y, Sung HJ. An elaboration of annihilators of polynomials. Bulletin of the Korean Mathematical Society 2017; 54 (2): 521-541. doi: 10.4134/BKMS.b160160 · Zbl 1383.16036 · doi:10.4134/BKMS.b160160
[5] Du C, Wang L, Wei J. On a generalization of semicommutative rings. Journal of Mathematical Research with Applications 2014; 34 (3): 253-264. doi: 10.3770/j.issn:2095-2651.2014.03.001 · Zbl 1313.16072 · doi:10.3770/j.issn:2095-2651.2014.03.001
[6] Feller EH. Properties of primary noncommutative rings. Transactions of the American Mathematical Society 1958: 89 (1): 79-91. doi: 10.2307/1993133 · Zbl 0095.25703 · doi:10.2307/1993133
[7] Goodearl KR. Von Neumann Regular Rings. Pitman, London, 1979. · Zbl 0411.16007
[8] Goodearl KR, Warfield RB Jr. An Introduction to Noncommutative Noetherian Rings. Cambridge University Press, Cambridge-New York-Port Chester-Melbourne-Sydney, 1989. · Zbl 0679.16001
[9] Han J, Kwak TK, Lee CI, Lee Y, Seo Y. Generalizations of reversible and Armendariz rings. International Journal of Algebra and Computation 2016; 26 (5): 911-933. doi: 10.1142/S0218196716500387 · Zbl 1362.16041 · doi:10.1142/S0218196716500387
[10] Herstein IN. Topics in Ring Theory. Univ. Chicago Press, Chicago, 1965. · Zbl 0199.07702
[11] Huh C, Kim HK, Lee Y. p.p. rings and generalized p.p. rings. Journal of Pure and Applied Algebra 2002; 167 (1): 37-52. doi: 10.1016/S0022-4049(01)00149-9 · Zbl 0994.16003 · doi:10.1016/S0022-4049(01)00149-9
[12] Huh C, Lee Y, Smoktunowicz A. Armendariz rings and semicommutative rings. Communications in Algebra 2002; 30 (2): 751-761. doi: 10.1081/AGB-120013179 · Zbl 1023.16005 · doi:10.1081/AGB-120013179
[13] Hwang SU, Jeon YC, Lee Y. Structure and topological conditions of NI rings. Journal of Algebra 2006; 302 (1): 186-199. doi: 10.1016/j.jalgebra.2006.02.032 · Zbl 1104.16015 · doi:10.1016/j.jalgebra.2006.02.032
[14] Jacobson N. Structure of Rings. American Mathematical Society Colloquium Publications, Vol. 37 (American Mathematical Society, Providence, RI, 1964) [Revised edition].
[15] Jeon YC, Kim HK, Lee Y, Yoon JS. On weak Armendariz rings. Bulletin of the Korean Mathematical Society 2009; 46 (1): 135-146. doi: 10.4134/BKMS.2009.46.1.135 · Zbl 1180.16018 · doi:10.4134/BKMS.2009.46.1.135
[16] Kim NK, Kwak TK, Lee Y. On a generalization of right duo rings. Bulletin of the Korean Mathematical Society 2016; 53 (3): 925-942. doi: 10.4134/BKMS.b150441 · Zbl 1354.16003 · doi:10.4134/BKMS.b150441
[17] Kim NK, Lee Y. Extension of reversible rings. Journal of Pure and Applied Algebra 2003; 185 (1-3): 207-223. doi: 10.1016/S0022-4049(03)00109-9 · Zbl 1040.16021 · doi:10.1016/S0022-4049(03)00109-9
[18] Kim NK, Lee Y, Ziembowski M. Annihilating properties of ideals generated by coefficients of polynomials and power series. International Journal of Algebra and Computation 2022; 32 (02): 237-249. doi: 10.1142/S0218196722500114 · Zbl 1508.16030 · doi:10.1142/S0218196722500114
[19] Klein AA. Rings of bounded index. Communications in Algebra 1954; 12 (1-2): 9-21. doi: 10.1080/00927878408822986 · Zbl 0535.16006 · doi:10.1080/00927878408822986
[20] Lambek J. Lectures on Rings and Modules. Blaisdell Publishing Company, Waltham, 1966. · Zbl 0143.26403
[21] Lee CI, Lee Y. Properties of K-rings and rings satisfying similar conditions. International Journal of Algebra and Computation 2011; 21 (08): 1381-1394. doi: 10.1142/S0218196711006613 · Zbl 1243.16040 · doi:10.1142/S0218196711006613
[22] Marks G. On 2-primal Ore extensions. Communications in Algebra 2001; 29 (5): 2113-2123. doi: 10.1081/AGB-100002173 · Zbl 1005.16027 · doi:10.1081/AGB-100002173
[23] McConnell JC, Robson JC. Noncommutative Noetherian Rings. John Wiley & Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore, 1987. · Zbl 0644.16008
[24] McCoy NH. Generalized regular rings. Bulletin of the American Mathematical Society 1939; 45 (2): 175-178. doi: 10.1090/S0002-9904-1939-06933-4 · JFM 65.0088.05 · doi:10.1090/S0002-9904-1939-06933-4
[25] Nielsen PP. Semi-commutativity and the McCoy condition. Journal of Algebra 2006; 298 (1): 134-141. doi: 10.1016/j.jalgebra.2005.10.008 · Zbl 1110.16036 · doi:10.1016/j.jalgebra.2005.10.008
[26] Roy D, Subedi T. Generalized semicommutative rings. Vestnik St. Petersburg University, Mathematics 2020; 7 (1): 68-76. doi: 10.1134/S1063454120010094 · Zbl 1469.16074 · doi:10.1134/S1063454120010094
[27] Shin G. Prime ideals and sheaf representation of a pseudo symmetric ring. Transactions of the American Mathe-matical Society 1973; 184: 43-60. doi: 10.1090/S0002-9947-1973-0338058-9 · Zbl 0283.16021 · doi:10.1090/S0002-9947-1973-0338058-9
[28] Yao X. Weakly right duo rings. Pure and Applied Mathematical Science 1985; 21: 19-24. · Zbl 0587.16007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.