×

Dynamics of the three-dimensional Brinkman-Forchheimer-extended Darcy model in the whole space. (English) Zbl 1534.35039

Summary: This paper is concerned with the pullback dynamics of a three-dimensional Brinkman-Forchheimer-extended Darcy (3D BFeD) model for porous media in the whole space. The existence and uniqueness of weak solutions is achieved firstly, leading to the generation of a continuous non-autonomous cocycle for the BFed model. Based on the global well-posedness, the existence of pullback attractors is proved by using uniform a priori estimates on the tails of solutions outside bounded domains.

MSC:

35B41 Attractors
35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] F. Abergel, Existence and finite dimensionality of the global attractor for evolution equations on unbounded domains, J. Differential Equations, 83, 85-108, 1990 · Zbl 0706.35058 · doi:10.1016/0022-0396(90)90070-6
[2] S. N. H. B. Antontsev de Oliveira, The Navier-Stokes problem modified by an absorption term, Appl. Anal. Int. J., 89, 1805-1825, 2010 · Zbl 1215.35087 · doi:10.1080/00036811.2010.495341
[3] L. C. K. K. Arnold Jones Mischaikow, Random Dynamical Systems, 1995
[4] A. V. M. I. Babin Vishik, Attractors of Evolution Equations (Studies in Mathematics and its Applications), 1992 · Zbl 0778.58002
[5] J. M. Ball, Continuity properties and global attractors of generalized semiflows and the Navier-Stokes equations, J. Nonlinear Sci., 7, 475-502, 1997 · Zbl 0903.58020 · doi:10.1007/s003329900037
[6] J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10, 31-52, 2004 · Zbl 1056.37084 · doi:10.3934/dcds.2004.10.31
[7] J. W. W. B. Barrettt Liut, Finite element approximation of the parabolic p-Laplacian, SIAM J. Numer. Anal., 31, 413-428, 1994 · Zbl 0805.65097 · doi:10.1137/0731022
[8] P. W. H. K. Bates Lisei Lu, Attractors for stochastic lattice dynamical systems, Stoch. Dyn., 6, 1-21, 2006 · Zbl 1105.60041 · doi:10.1142/S0219493706001621
[9] H. S. H. Bessaih Trabelsi Zorgati, Existence and uniqueness of global solutions for the modified anisotropic 3D Navier-Stokes equations, ESAIM Math. Model. Numer. Anal., 50, 1817-1823, 2016 · Zbl 1356.35155 · doi:10.1051/m2an/2016008
[10] M. M. S. C. Buès Panilov Oltean Crosnier, Macroscale model and viscous-inertia effects for Navier-Stokes flow in a radial fracture with corrugated walls, J. Fluid Mech., 504, 41-60, 2004 · Zbl 1116.76333 · doi:10.1017/S002211200400816X
[11] X. Q. Cai Jiu, Weak and strong solutions for incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343, 799-809, 2008 · Zbl 1143.35349 · doi:10.1016/j.jmaa.2008.01.041
[12] T. J. A. J. C. Caraballo Langa Robinson, A stochastic pitchfork bifurcation in a reaction diffusion equation, Proc. Roy. Soc. London Ser. A, 457, 2041-2061, 2001 · Zbl 0996.60070 · doi:10.1098/rspa.2001.0819
[13] T. G. J. Caraballo Łukaszewicz Real, Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris Sér. I Math., 342, 263-268, 2006 · Zbl 1085.37054 · doi:10.1016/j.crma.2005.12.015
[14] T. G. J. Caraballo Łukaszewicz Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal., 64, 484-498, 2006 · Zbl 1128.37019 · doi:10.1016/j.na.2005.03.111
[15] D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems, World Scientific, Singapore, Singapore, 2004. · Zbl 1098.37002
[16] M. J.-L. P. L. Firdaouss Guermond Quéré, Nonlinear corrections to Darcy’s law at low Reynolds numbers, J. Fluid Mech., 343, 331-350, 2000 · Zbl 0897.76091 · doi:10.1017/S0022112097005843
[17] P. H. Forchheimer, Wasserbewegung durch Boden, Zeitschrift fur Acker und Pflanzenbau, 49, 1736-1749, 1901
[18] M. G. R. C. Fourar Radilla Lenormand Moyne, On the non-linear behavior of a laminar single-phase flow through two and three-dimensional porous media, Adv. Water Res., 27, 669-677, 2004 · doi:10.1016/j.advwatres.2004.02.021
[19] K. W. J. C. Hajduk Robinson, Energy equality for the 3D critical convective Brinkman-Forchheimer equations, J. Differential Equations, 263, 7141-7161, 2017 · Zbl 1379.35242 · doi:10.1016/j.jde.2017.08.001
[20] C. T. P. Hsu Cheng, Thermal dispersion in a porous medium, Internat. J. Heat Mass Transfer, 33, 1587-1597, 1990 · Zbl 0703.76079 · doi:10.1016/0017-9310(90)90015-M
[21] V. K. S. Kalantarov Zelik, Smooth Attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities, Commun. Pure Appl. Anal., 11, 2037-2054, 2012 · Zbl 1264.35054 · doi:10.3934/cpaa.2012.11.2037
[22] J.-R. J.-Y. Kang Park, Uniform attractors for non-autonomous Brinkman-Forchheimer equations with delay, Acta Math. Sina., 29, 993-1006, 2013 · Zbl 1275.35047 · doi:10.1007/s10114-013-1392-0
[23] Y.-H. C.-L. K.-O. Kim Jon Li, Regularity and uniqueness of weak solutions of the damped Navier-Stokes equations with variable exponents, J. Phys.: Conf. Ser., 1141, 1-14, 2018 · doi:10.1088/1742-6596/1141/1/012103
[24] M. N. S. S. Louaked Seloula Sun Trabelsi, A pseudocompressibility method for the incompressible Brinkman-Forchheimer equations, Differential Integral Equations, 28, 361-382, 2015 · Zbl 1340.35264 · doi:10.57262/die/1423055233
[25] P. A. E. S. S. Markowich Titi Trabelsi, Continuous data assimilation for the three-dimensional Brinkman-Forchheimer-extended Darcy model, Nonlinearity, 29, 1292-1328, 2016 · Zbl 1339.35246 · doi:10.1088/0951-7715/29/4/1292
[26] M. T. Mohan, Asymptotic analysis of the 2D convective Brinkman-Forchheimer equations in unbounded domains: Global attractors and upper semicontinuity, preprint, 2020, arXiv: 2010.12814.
[27] I. R. X. Moise Rosa Wang, Attractors for noncompact nonautonomous systems via energy equations, Discrete Contin. Dyn. Syst., 10, 473-496, 2004 · Zbl 1060.35023 · doi:10.3934/dcds.2004.10.473
[28] D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Internat. J. Numer. Methods Heat Fluid Flow, 12, 269-272, 1991 · doi:10.1016/0142-727X(91)90062-Z
[29] K. R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solid, Math. Models Meth. Appl. Sci., 17, 215-252, 2007 · Zbl 1123.76066 · doi:10.1142/S0218202507001899
[30] J. C. Robinson, Infinite-Dimensional Dynamical Systems, 2001 · doi:10.1007/978-94-010-0732-0
[31] J. C. J. L. W. Robinson Rodrigo Sadowski, The Three-Dimensional Navier-Stokes Equations, 2016 · Zbl 1358.35002 · doi:10.1017/CBO9781139095143
[32] A. Schenke, The tamed MHD equations, J. Evol. Equ., 21, 969-1018, 2021 · Zbl 1464.76215 · doi:10.1007/s00028-020-00615-9
[33] X. Song, Pullback \(\mathcal{D} \)-attractors for a non-autonomous Brinkman-Forchheimer system, J. Math. Res. Appl., 33, 90-100, 2013 · Zbl 1289.35038
[34] X. Y. Song Hou, Uniform attractors for a non-autonomous Brinkman-Forchheimer equation, J. Math. Res. Appl., 2, 63-75, 2012 · Zbl 1265.35033
[35] Z. X. Y. Tao Yang Lin, Determination of three-dimensional Brinkman-Forchheimer-extended Darcy flow, Fractal Fract., 7, 1-20, 2023
[36] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1998 · doi:10.1007/978-1-4612-0645-3
[37] R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, Reprint of the 1984 edition, AMS Chelsea Publishing, Providence, RI, 2001. · Zbl 0981.35001
[38] D. Uǧurlu, On the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 68, 1986-1992, 2008 · Zbl 1137.35316 · doi:10.1016/j.na.2007.01.025
[39] K. R. Vafai Thiyagaraja, Analysis of flow and heat transfer at the interface region of a porous medium, Internat. J. Heat Mass Transfer, 30, 1391-1405, 1987 · Zbl 0628.76098 · doi:10.1016/0017-9310(87)90171-2
[40] B. Wang, Attractors for reaction diffusion equations in unbounded domains, Phys. D, 128, 41-52, 1999 · Zbl 0953.35022 · doi:10.1016/S0167-2789(98)00304-2
[41] B. S. Wang Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Methods Appl. Sci., 31, 1479-1495, 2008 · Zbl 1146.35322 · doi:10.1002/mma.985
[42] O. L-e Yang Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70, 2054-2059, 2009 · Zbl 1177.35039 · doi:10.1016/j.na.2008.02.121
[43] S. Zelik, Attractors then and now, preprint, 2022, arXiv: 2208.12101.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.