×

Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. (English) Zbl 1358.81068

Summary: We propose a new protocol of asymmetric bidirectional controlled teleportation by using a seven-qubit cluster state as the quantum channel. That is to say Alice wants to transmit an arbitrary single-qubit state to Bob and Bob wants to transmit an arbitrary two qubit state to Alice via the control of the supervisor Charlie. One only need perform the Bell-state measurements and single-qubit measurement.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring[C]. Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on IEEE, 124-134 (1994)
[2] Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack [J]. Phys. Rev. Lett. 79(2), 325 (1997) · doi:10.1103/PhysRevLett.79.325
[3] Long, G.L.: Grover algorithm with zero theoretical failure rate[J]. Phys. Rev. A 64(2), 022307 (2001) · doi:10.1103/PhysRevA.64.022307
[4] Toyama, F.M., van Dijk, W., Nogami, Y.: Quantum search with certainty based on modified Grover algorithms: optimum choice of parameters[J]. Quantum Inf. Process 12(5), 1897-1914 (2013) · Zbl 1271.81054 · doi:10.1007/s11128-012-0498-0
[5] Castagnoli, G.: arXiv preprint, arXiv:1308.5077 (2013)
[6] Bennett, C.H., Brassard, B.: Quantum cryptography: public key distribution and coin toss- ing. In: proceedings of IEEE international conference on computers, systems and signal Pro- cessing, Bangalore, India (IEEE New York), pp. 175-179 (1984)
[7] Ekert, A.K.: Quantum cryptography based on Bells theorem[J]. Phys. Rev. Lett. 67(6), 661 (1991) · Zbl 0990.94509 · doi:10.1103/PhysRevLett.67.661
[8] Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem[J]. Phys. Rev. Lett. 68(5), 557 (1992) · Zbl 0969.94500 · doi:10.1103/PhysRevLett.68.557
[9] Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution[J]. Phys. Rev. A 68(4), 042315 (2003) · doi:10.1103/PhysRevA.68.042315
[10] Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication[J]. Phys. Rev. Lett. 91(5), 057901 (2003) · doi:10.1103/PhysRevLett.91.057901
[11] Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses[J]. Phys. Rev. A 70(1), 012311 (2004) · doi:10.1103/PhysRevA.70.012311
[12] Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography[J]. Phys. Rev. Lett. 94(23), 230503 (2005) · doi:10.1103/PhysRevLett.94.230503
[13] Lo, H.K., Ma. X., Chen, K.: Decoy state quantum key distribution[J]. Phys. Rev. Lett. 94(23), 230504 (2005) · doi:10.1103/PhysRevLett.94.230504
[14] Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel[J]. Phys. Rev. A 78(2), 022321 (2008) · doi:10.1103/PhysRevA.78.022321
[15] Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108(13), 130503 (2012) · doi:10.1103/PhysRevLett.108.130503
[16] Hillery, M.; Buzek, V.; Berthiaume, A., No article title, Phys. Rev. A, 59, 1829 (1990) · Zbl 1368.81066 · doi:10.1103/PhysRevA.59.1829
[17] Karlsson, A.; Koashi, M.; Imoto, N., No article title, Phys. Rev. A, 59, 162 (1999) · doi:10.1103/PhysRevA.59.162
[18] Cleve, R.; Gottesman, D.; Lo, HK, No article title, Phys. Rev. Lett, 83, 648 (1999) · doi:10.1103/PhysRevLett.83.648
[19] Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[20] Lance, A.M., Symul, T., Bowen, W.P., et al.: Tripartite quantum state sharing[J]. Phys. Rev. Lett 92(17), 177903 (2004) · doi:10.1103/PhysRevLett.92.177903
[21] Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing[J]. J. Phys. A Math. Gen. 39(45), 14089 (2006) · Zbl 1106.81018 · doi:10.1088/0305-4470/39/45/018
[22] Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Phys. Rev. A, 65(3), 032302 (2002) · doi:10.1103/PhysRevA.65.032302
[23] Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block[J]. Phys. Rev. A 68(4), 042317 (2003) · doi:10.1103/PhysRevA.68.042317
[24] Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad[J]. Phys. Rev. A 69(5), 052319 (2004) · doi:10.1103/PhysRevA.69.052319
[25] Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71(4), 044305 (2005) · doi:10.1103/PhysRevA.71.044305
[26] Wang, TJ; Li, T.; Du, FF; Deng, FG, No article title, Phys. Lett., 28, 040305 (2011)
[27] Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel[J]. Sci. China Phys. Mech. Astron. 54(5), 942-947 (2011) · doi:10.1007/s11433-011-4265-5
[28] Bin, G., Yu-Gai, H., Xia, F., et al.: A two-step quantum secure direct communication protocol with hyperentanglement[J]. Chin. Phys. B 20(10), 100309 (2011) · doi:10.1088/1674-1056/20/10/100309
[29] Gu, B., Huang, Y., Fang, X., et al.: Robust quantum secure communication with spatial quantum states of single photons[J]. Int. J. Theor. Phys. 52(12), 4461-4469 (2013) · Zbl 1283.81048 · doi:10.1007/s10773-013-1765-2
[30] Zhang, Q., Li, C., Li, Y., et al.: Quantum secure direct communication based on four-qubit cluster states[J]. Int. J. Theor. Phys. 52(1), 22-27 (2013) · Zbl 1264.81162 · doi:10.1007/s10773-012-1294-4
[31] Chang, Y., Xu, C.X., Zhang, S.B., et al.: Quantum secure direct communication and authentication protocol with single photons[J]. Chin. Sci. Bull. 58 (36), 4571-4576 (2013) · doi:10.1007/s11434-013-6091-9
[32] Zou, X.F., Qiu, D.W.: Three-step semiquantum secure direct communication protocol[J]. Sci. China Phys. Mech. Astron. 57(9), 1696-1702 (2014) · doi:10.1007/s11433-014-5542-x
[33] Zheng, C., Long, G.F.: Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs[J]. Sci. China Phys. Mech. Astron. 57(7), 1238-1243 (2014) · doi:10.1007/s11433-014-5461-x
[34] Su, X.: Applying Gaussian quantum discord to quantum key distribution[J]. Chin. Sci. Bull. 59(11), 1083-1090 (2014) · doi:10.1007/s11434-014-0193-x
[35] Zhang, C.M., Song, X.T., Treeviriyanupab, P., et al.: Delayed error verification in quantum key distribution[J]. Chin. Sci. Bull. 59(23), 2825-2828 (2014) · doi:10.1007/s11434-014-0446-8
[36] Zhang, CX; etal., No article title, Sci China-Phys mecha and Astro, 57, 2043-2048 (2014) · doi:10.1007/s11433-014-5557-3
[37] Xu, J.S., Li, C.F.: Quantum integrated circuit: classical characterization[J]. Sci. Bull. 60(1), 141-141 (2015) · doi:10.1007/s11434-014-0703-x
[38] Xiaom, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[39] Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes[J]. Phys. Rev. A 69(5), 052307 (2004) · doi:10.1103/PhysRevA.69.052307
[40] Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71(4), 044305 (2005) · doi:10.1103/PhysRevA.71.044305
[41] Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack[J]. Phys. Rev. A 72(4), 044302 (2005) · doi:10.1103/PhysRevA.72.044302
[42] Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle greenCHorneCZeilinger state[J]. Opt. Commun. 253(1), 15-20 (2005) · doi:10.1016/j.optcom.2005.04.048
[43] Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information[J]. Phys. Lett. A 341(1), 55-59 (2005) · Zbl 1171.81364 · doi:10.1016/j.physleta.2005.04.062
[44] Li, C.Y., Li, X.H., Deng, F.G., et al.: Complete multiple round quantum dense coding with quantum logical network[J]. Chin. Sci. Bull. 52(9), 1162-1165 (2007) · doi:10.1007/s11434-007-0148-6
[45] Li, X., Deng, F.: Controlled teleportation[J]. Frontiers of Computer Science in China 2(2), 147-160 (2008) · doi:10.1007/s11704-008-0020-0
[46] Zuo, X.Q., Liu, Y.M., Zhang, W., et al.: Simpler criterion on W state for perfect quantum state splitting and quantum teleportation[J]. Sci. China Ser. G Phys. Mech. Astron. 52(12), 1906-1912 (2009) · doi:10.1007/s11433-009-0305-9
[47] Yin, X.F., Liu, Y.M., Zhang, Z.Y., et al.: Perfect teleportation of an arbitrary three-qubit state with the highly entangled six-qubit genuine state[J]. Sci. China Ser. G Phys. Mech. Astron. 53(11), 2059-2063 (2010) · doi:10.1007/s11433-010-4050-x
[48] Bennett, CH; Brassard, G.; Crepeau, C.; Jozsa, R.; Peres, A.; Wooters, WK, No article title, Phys. Rev. Lerr., 70, 1895 (1993)
[49] Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold Sn-1[J]. Phys. Rev. A 65(2), 022316 (2002) · doi:10.1103/PhysRevA.65.022316
[50] Peng, X., Zhu, X., Fang, X., et al.: Experimental implementation of remote state preparation by nuclear magnetic resonance[J]. Phys. Lett. A 306(5), 271-276 (2003) · doi:10.1016/S0375-9601(02)01604-3
[51] Yan, F., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states[J]. Phys. Lett. A 316(5), 297-303 (2003) · Zbl 1031.81008 · doi:10.1016/j.physleta.2003.08.007
[52] Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement[J]. Phys. Rev. A 70(2), 022329 (2004) · doi:10.1103/PhysRevA.70.022329
[53] Xiang, G.Y., Li, J., Yu, B., et al.: Remote preparation of mixed states via noisy entanglement[J]. Phys. Rev. A 72(1), 012315 (2005) · doi:10.1103/PhysRevA.72.012315
[54] Gao, T., Yan, F.L.: Nuovo cimento B 119 (2004) 313; T. Gao, FL Yan, and ZX Wang[J]. Chin. Phys. 14, 893 (2005) · doi:10.1088/1009-1963/14/5/006
[55] Dengm F.G., Li, C.Y., Li, Y.S., et al.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement[J]. Phys. Rev. A 72(2), 022338 (2005)
[56] Rigolin, G.: Quantum teleportation of an arbitrary two-qubit state and its relation to multipartite entanglement[J]. Phys. Rev. A 71(3), 032303 (2005) · doi:10.1103/PhysRevA.71.032303
[57] Yuan, H.C., Qi, K.G.: vol. 14 (2005) · Zbl 1327.81113
[58] Zhang, ZJ; Man, ZX, No article title, Phys. Lett. A, 242, 55 (2005) · Zbl 1171.81364 · doi:10.1016/j.physleta.2005.04.062
[59] Deng, F.G., Li, X.H., Li, C.Y., et al.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs[J]. Phys. Rev. A 72(4), 044301 (2005) · doi:10.1103/PhysRevA.72.044301
[60] Zhang, Z.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message[J]. Phys. Lett. A 352(1), 55-58 (2006) · Zbl 1187.81054 · doi:10.1016/j.physleta.2005.11.051
[61] Yan, FL; Ding, HW, No article title, Chin. Phys. Lett., 23, 17 (2006) · doi:10.1088/0256-307X/23/1/006
[62] Yeo, Y., Chua, W.K.: Teleportation and dense coding with genuine multipartite entanglement[J]. Phys. Rev. Lett. 96(6), 060502 (2006) · doi:10.1103/PhysRevLett.96.060502
[63] Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements[J]. Eur. Phys. J. D Optical and Plasma Physics 39(3), 459-464 (2006) · doi:10.1140/epjd/e2006-00124-1
[64] Dong, L.; Xiu, XM; Gao, YJ, No article title, Int. J. Mod. Phys. C, 18, 1699 (2007) · Zbl 1170.81318 · doi:10.1142/S0129183107011674
[65] Cao, H.J., Song, H.S.: Teleportation of a single qubit state via Unique W State[J]. Int. J. Theor. Phys. 46(6), 1636-1642 (2007) · Zbl 1118.81011 · doi:10.1007/s10773-006-9301-2
[66] Zhou, P., Li, X.H., Deng, F.G., et al.: Multiparty-controlled teleportation of an arbitrary m-qudit state with a pure entangled quantum channel[J]. J. Phys. A Math. Theor. 40(43), 13121 (2007) · Zbl 1124.81011 · doi:10.1088/1751-8113/40/43/019
[67] Jiang, WX; Fang, JX; Zhu, SJ; Sha, JQ, No article title, Chin. Phys. Lett., 24, 1144-1146 (2007) · doi:10.1088/0256-307X/24/5/005
[68] Da-Chuang, L., Zhuo-Liang, C.: Teleportation of two-particle entangled state via cluster state[J]. Commun. Theor. Phys. 47(3), 464 (2007) · doi:10.1088/0253-6102/47/3/017
[69] Zhan, XG; Li, HM; Ji, H.; Zeng, HS, No article title, Chin. Phys. B, 16, 2880-2884 (2007) · doi:10.1088/1009-1963/16/10/009
[70] Wang, ZY; Yuan, H.; Shi, SH; Zhang, ZJ, No article title, Eur. Phys. J. D, 41, 371-375 (2007) · doi:10.1140/epjd/e2006-00215-y
[71] Gao, T., Yan, F.L., Li, Y.C.: Optimal controlled teleportation[J]. EPL (Europhysics Letters) 84(5), 50001 (2008) · doi:10.1209/0295-5075/84/50001
[72] Wang, X.W., Yang, G.J.: Schemes for preparing atomic qubit cluster states in cavity QED[j]. Optic Communication 281(20), 5282-5285 (2008) · doi:10.1016/j.optcom.2008.07.009
[73] Zha, X.W., Ren, K.F.: General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation[J]. Phys. Rev. A 77(1) (2008) · Zbl 1282.81044
[74] Li, X., Deng, F.: Controlled teleportation[J]. Frontiers of Computer Science in China 2(2), 147-160 (2008) · doi:10.1007/s11704-008-0020-0
[75] Hao, Y., Yi-Min, L., Lian-Fang, H., et al.: Tripartite arbitrary two-qutrit quantum state sharing[J]. Commun. Theor. Phys. 49(5), 1191 (2008) · Zbl 1392.81108 · doi:10.1088/0253-6102/49/5/24
[76] Dong, J., Teng, J.F.: Controlled teleportation of an arbitrary n-qudit state using nonmaximally entangled GHZ states[J]. Eur. Phys. J. D 49(1), 129-134 (2008) · doi:10.1140/epjd/e2008-00141-0
[77] Tao, YJ; Tian, DP; Hu, ML; Qin, M., No article title, Chin. Phys. B, 17, 624-627 (2008) · doi:10.1088/1674-1056/17/3/036
[78] Xia, Y., Song, J., Song, H.S.: Quantum state sharing using linear optical elements[J]. Opt. Commun. 281(19), 4946-4950 (2008) · doi:10.1016/j.optcom.2008.06.028
[79] Wang, T.J., Zhou, H.Y., Deng, F.G.: Quantum state sharing of an arbitrary m-qudit state with two-qudit entanglements and generalized Bell-state measurements[J]. Physica A: Statistical Mechanics and its Applications 387(18), 4716-4722 (2008) · doi:10.1016/j.physa.2008.03.030
[80] Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient and economic five-party quantum state sharing of an arbitrary m-qubit state[J]. Eur. Phys. J. D 48(2), 279-284 (2008) · doi:10.1140/epjd/e2008-00075-5
[81] Romano, R., van Loock, P.: Teleportation is necessary for faithful quantum state transfer through noisy channels of maximal rank[J]. Phys. Rev. A 82(1), 012334 (2010) · doi:10.1103/PhysRevA.82.012334
[82] Zha, XW; Song, HY, No article title, Commun. Theor. Phys., 53, 852 (2010) · Zbl 1222.81141 · doi:10.1088/0253-6102/53/5/12
[83] Chen, X.B., Xu, G., Yang, Y.X., et al.: Centrally controlled quantum teleportation[J]. Opt. Commun. 283(23), 4802-4809 (2010) · doi:10.1016/j.optcom.2010.07.058
[84] Chen, Q.Q., Xia, Y., Song, J., et al.: Joint remote state preparation of a W-type state via W-type states[J]. Phys. Lett. A 374(44), 4483-4487 (2010) · Zbl 1238.81048 · doi:10.1016/j.physleta.2010.09.013
[85] Hou, K., Liu, G.H., Zhang, X.Y., et al.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states[J]. Quantum Inf. Process. 10(4), 463-473 (2011) · Zbl 1225.81026 · doi:10.1007/s11128-010-0211-0
[86] Nie, Y., Li, Y., Liu, J., et al.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states[J]. Opt. Commun. 284(5), 1457-1460 (2011) · doi:10.1016/j.optcom.2010.10.084
[87] Shi, R.H., Huang, L.S., Yang, W., et al.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state[J]. Quantum Inf. Process 10(1), 53-61 (2011) · Zbl 1209.81054 · doi:10.1007/s11128-010-0176-z
[88] Yang, K.Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states[J]. Int. J. Theor. Phys. 51(5), 1647-1654 (2012) · Zbl 1255.81095 · doi:10.1007/s10773-011-1041-2
[89] Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630-1634 (2013) · doi:10.1007/s10773-013-1484-8
[90] Luo, M.X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with -state[J]. Quantum Inf. Process 12(2), 773-784 (2013) · Zbl 1264.81144 · doi:10.1007/s11128-012-0418-3
[91] Qi, J.X., Zha, X.W., Sun, X.M.: Testing the nonlocality of entangled states by a new Bell-like inequality[J]. Sci. China Phys. Mech. Astron. 56(11), 2236-2238 (2013) · doi:10.1007/s11433-013-5319-7
[92] Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state[J]. Int. J. Theor. Phys. 54(1), 269-272 (2015) · Zbl 1315.81030 · doi:10.1007/s10773-014-2221-7
[93] Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication[J]. Phys. Rev. A 82(3), 032318 (2010) · doi:10.1103/PhysRevA.82.032318
[94] Wang, X.L., Cai, X.D., Su, Z.E., et al.: Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature 518(7540), 516-519 (2015) · doi:10.1038/nature14246
[95] Zha, X.W., Zou, Z.C., Qi, J.X., et al.: Bidirectional quantum controlled teleportation via five-qubit cluster state[J]. Int. J. Theor. Phys. 52(6), 1740-1744 (2013) · doi:10.1007/s10773-012-1208-5
[96] Duan, Y.J., Zha, X.W., Sun, X.M., et al.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state[J]. Int. J. Theor. Phys. 53 (8), 2697-2707 (2014) · Zbl 1308.81045 · doi:10.1007/s10773-014-2065-1
[97] Li, Y., Nie, L.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-bell state[J]. Int. J. Theor. Phys. 52(5), 1630-1634 (2013) · doi:10.1007/s10773-013-1484-8
[98] Li, Y., Li, X., Sang, M., et al.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state[J]. Quantum Inf. Process. 12(12), 3835-3844 (2013) · Zbl 1303.81061 · doi:10.1007/s11128-013-0638-1
[99] Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view[J]. Int. J. Theor. Phys. 52(10), 3790-3796 (2013) · doi:10.1007/s10773-013-1684-2
[100] Sun, X.M., Zha, X.W.: A scheme of bidirectional quantum controlled teleportation via six-qubit maximally entangled state[J]. Acta Photonica Sin 48, 1052-1056 (2013)
[101] Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state[J]. Int. J. Theor. Phys. 52(11), 3870-3873 (2013) · Zbl 1282.81044 · doi:10.1007/s10773-013-1694-0
[102] Zhang, D., Zha, X.W., Duan, Y.J.: Bidirectional and asymmetric quantum controlled teleportation[J]. Int. J. Theor. Phys. 54(5), 1711-1719 (2015) · Zbl 1327.81114 · doi:10.1007/s10773-014-2372-6
[103] Hou, S.Y., Sheng, Y.B., Feng, G.R., et al.: Experimental optimal single qubit purification in an NMR quantum information processor[J]. Sci. Rep., 4 (2014)
[104] Zhao, S.Y., Liu, J., Zhou, L., et al.: Two-step entanglement concentration for arbitrary electronic cluster state[J]. Quantum Inf. Process. 12(12), 3633-3647 (2013) · Zbl 1303.81033 · doi:10.1007/s11128-013-0623-8
[105] Bin, S., Shi-Lei, S., Li-Li, S., et al.: Efficient three-step entanglement concentration for an arbitrary four-photon cluster state[J]. Chin. Phys. B 22(3), 030305 (2013) · doi:10.1088/1674-1056/22/3/030305
[106] Lan, Z.: Consequent entanglement concentration of a less-entangled electronic cluster state with controlled-not gates[J]. Chin. Phys. B 23(5), 050308 (2014) · doi:10.1088/1674-1056/23/5/050308
[107] Cao, C., Wang, T.J., Zhang, R., et al.: Cluster state entanglement generation and concentration on nitrogen-vacancy centers in decoherence-free subspace[J]. Laser Phys. Lett. 12(3), 036001 (2015) · doi:10.1088/1612-2011/12/3/036001
[108] Osorio, C.I., Bruno, N., Sangouard, N., et al.: Heralded photon amplification for quantum communication[J]. Phys. Rev. A 86(2), 023815 (2012) · doi:10.1103/PhysRevA.86.023815
[109] Zhou, L., Sheng, Y.B.: Recyclable amplification protocol for the single-photon entangled state[J]. Laser Phys. Lett. 12(4), 045203 (2015) · doi:10.1088/1612-2011/12/4/045203
[110] Sang, M.H.: Int. J. Theor. Phys. doi:10.1007/s10773-015-2670-7 · Zbl 1308.81045
[111] Zhang, D., Zha, X.W., Li, W., et al.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state[J]. Quantum Inf. Process. 14(10), 3835-3844 (2015) · Zbl 1327.81113 · doi:10.1007/s11128-015-1067-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.