×

Classification of the pentavalent symmetric graphs of order \(8pq\). (English) Zbl 1523.05014

Authors’ abstract: A graph \(X\) is symmetric if its automorphism group is transitive on the arc set of the graph. Let \(p\) and \(q\) be two prime integers. In this paper, a complete classification is determined of connected pentavalent symmetric graphs of order \(8pq\).

MSC:

05C25 Graphs and abstract algebra (groups, rings, fields, etc.)
05C60 Isomorphism problems in graph theory (reconstruction conjecture, etc.) and homomorphisms (subgraph embedding, etc.)
20B25 Finite automorphism groups of algebraic, geometric, or combinatorial structures

Software:

Magma
Full Text: DOI

References:

[1] 1] M. Alaeiyan and M. Akbarizadeh, Classification of the pentavalent symmetric graphs of order 18p, Indian J. Pure Appl. Math., 50 no. 2 (2019) 485-497. · Zbl 1429.05086
[2] [2] M. Alaeiyan and M. Hosseinipoor, A classification of cubic edge-transitive graphs of order 18p, U. Politeh. Buch. Ser A, 77 no. 2 (2015) 219-226. · Zbl 1349.05155
[3] [3] M. Alaeiyan and M. Hosseinipoor, Cubic symmetric graphs of order \(6p^3\) , Mat. Vesnik, 69 no. 2 ( 2017) 101-117. [4] M. Alaeiyan, B. Onagh and M. Hosseinipoor, A classification of cubic symmetric graphs of order \(16p^2\), Proc. Indian Acad. Sci. Math. Sci., 121 no. 3 (2011) 249-257. · Zbl 1268.05102
[4] [5] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput, 24 no. 3-4 (1997) 235-265. · Zbl 0898.68039
[5] [6] C.-y. Chao, On the classification of symmetric graphs with a prime number of vertices, Trans. Amer. Math. Soc., 158 (1971) 247-256. · Zbl 0217.02403
[6] [7] Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory Ser. B, 42 no. 2 (1987) 196-211. · Zbl 0583.05032
[7] [8] J. H. Conway, R. T. Curtis and S. P. Norton, Atlas of finite groups: maximal subgroups and ordinary characters for simple groups, 1985. · Zbl 0568.20001
[8] [9] S.-F. Du, D. Maruˇsiˇc and A. O. Waller, On 2−arc-transitive covers of complete graphs, J. Combin. Theory Ser. B, 74 no. 2 (1998) 276-290. · Zbl 1026.05057
[9] [10] Y. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10p or \(10p^2\), Sci. China Ser. A, 49 no. 3 (2006) 300-319. · Zbl 1109.05051
[10] [11] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime-power, J. Aust. Math. Soc, 81 no. 2 (2006) 153-164. · Zbl 1108.05050
[11] [12] Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory Ser. B, 97 no. 4 (2007) 627-646. · Zbl 1118.05043
[12] [13] Y.-Q. Feng, J. H. Kwak and K. Wang, Classifying cubic symmetric graphs of order 8p or \(8p^2\), European J. Combin, 26 no. 7 (2005) 1033-1052. · Zbl 1071.05043
[13] [14] D. Gorenstein, Finite simple groups: an introduction to their classification, Springer Science & Business Media, 2013.
[14] [15] S.-T. Guo and Y.-Q. Feng, A note on pentavalent s-transitive graphs, Discrete Math., 312 no. 15 (2012) 2214-2216. · Zbl 1246.05105
[15] [16] S.-t. Guo, H.-l. Hou and J.-t. Shi, Pentavalent symmetric graphs of order 16p, Acta Math. Appl. Sin. Engl. Ser, 33 no. 1 (2017) 115-124. · Zbl 1359.05058
[16] [17] S.-T. Guo, J.-X. Zhou and Y.-Q. Feng, Pentavalent symmetric graphs of order 12p, Electron. J. Combin., 18 no. 1 (2011) pp. 133. · Zbl 1243.05106
[17] [18] X. Hua and Y. Feng, Pentavalent symmetric graphs of order 8p, J. Beijing Jiaotong Univ., 35 (2011) 132-135.
[18] [19] X.-H. Hua, Y.-Q. Feng, and J. Lee, Pentavalent symmetric graphs of order 2pq, Discrete Math., 311 no. 20 (2011) 2259-2267. · Zbl 1246.05072
[19] [20] B. Huppert and W. Lempken, Simple groups of order divisible by at most four primes, IEM, 2000.
[20] [21] D. LE, Linear groups with an exposition of the galois field theory, 1958. · Zbl 0082.24901
[21] [22] B. Ling, Classifying pentavalent symmetric graphs of order 24p, Bull. Iranian Math. Soc., 43 no. 6 (2017) 1855-1866. · Zbl 1405.05076
[22] [23] P. Lorimer, Vertex-transitive graphs: Symmetric graphs of prime valency, J. Graph Theory, 8 no. 1 (1984) 55-68. · Zbl 0535.05031
[23] [24] R. C. Miller, The trivalent symmetric graphs of girth at most six, J. Combin. Theory Ser. B, 10 no. 2 (1971) 163-182. · Zbl 0223.05113
[24] [25] J. Pan, B. Lou, and C. Liu, Arc-transitive pentavalent graphs of order 4pq, Electron. J. Combin., 20 no. 1 (2013) pp. 9. · Zbl 1266.05061
[25] [26] C. E. Praeger, R.-J. Wang, and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B, 58 no. 2 (1993) 299-318. · Zbl 0793.05071
[26] [27] G. Sabidussi, Vertex-transitive graphs, Monatsh. Math., 68 no. 5 (1964) 426-438. · Zbl 0136.44608
[27] [28] W. Tutte, Connectivity in graphs, University of Toronto, 1966. · Zbl 0146.45603
[28] [29] R.-J. Wang and M.-Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B, 58 no. 2 (1993) 197-216. · Zbl 0793.05074
[29] [30] D.-W. Yang, R. Feng, and X.-H. Hua, On arc-transitive pentavalent graphs of order \(2^m p^n\), Appl. Math. Comput., 355 (2019) 269-281. · Zbl 1428.05137
[30] [31] D.-W. Yang, Y.-Q. Feng, and J.-L. Du, Pentavalent symmetric graphs of order 2pqr, Discrete Math., 339 no. 2 (2016) 522-532 · Zbl 1327.05149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.