×

A characterization of singular-hyperbolicity. (English) Zbl 1380.37062

Let \(\Lambda\) be a compact invariant set of a three-dimensional flow, such that all singularities \(\sigma\) are Lorenz like and satisfies \(W^{\mathrm{ss}} (\sigma) \cap \Lambda = \sigma\). The author proves that \(\Lambda\) is singular hyperbolic if and only if \(\Lambda^*\) has a dominated splitting of index 1 with respect to the linear Poincaré flow and every ergodic measure on \(\Lambda\) is of hyperbolic saddle type.

MSC:

37D20 Uniformly hyperbolic systems (expanding, Anosov, Axiom A, etc.)
37D30 Partially hyperbolic systems and dominated splittings
37C70 Attractors and repellers of smooth dynamical systems and their topological structure
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)

References:

[1] F. Abdenur, C. Bonatti, and S. Crovisier, Nonuniform hyperbolicity for C1-generic diffeomorphisms , Israel J. Math. 183 (2011), 1-60. · Zbl 1246.37040 · doi:10.1007/s11856-011-0041-5
[2] V. Araújo and L. Salgado, Infinitesimal Lyapunov functions for singular flows , Math. Z. 275 (2013), no. 3-4, 863-897. · Zbl 1408.37056 · doi:10.1007/s00209-013-1163-8
[3] V. Araújo, A. Arbieto, and L. Salgado, Dominated splittings for flows with singularities , Nonlinearity 26 (2013), no. 8, 2391-2407. · Zbl 1290.37012 · doi:10.1088/0951-7715/26/8/2391
[4] A. Arbieto, Sectional Lyapunov exponents , Proc. Amer. Math. Soc. 138 (2010), no. 9, 3171-3178. · Zbl 1218.37026 · doi:10.1090/S0002-9939-10-10410-9
[5] A. Arbieto and L. Salgado, On critical orbits and sectional hyperbolicity of the nonwandering set for flows , J. Differential Equations 250 (2011), no. 6, 2927-2939. · Zbl 1218.37027 · doi:10.1016/j.jde.2011.01.023
[6] A. Arroyo and F. Rodriguez Hertz, Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows , Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 5, 805-841. · Zbl 1045.37006 · doi:10.1016/S0294-1449(03)00016-7
[7] M. Bessa, The Lyapunov exponents of generic zero divergence three-dimensional vector fields , Ergodic Theory Dynam. Systems 27 (2007), no. 5, 1445-1472. · Zbl 1129.37010 · doi:10.1017/S0143385707000107
[8] M. Bessa and J. Rocha, Contributions to the geometric and ergodic theory of conservative flows , Ergodic Theory Dynam. Systems 33 (2013), no. 6, 1709-1731. · Zbl 1291.37042 · doi:10.1017/etds.2012.110
[9] C. Bonatti, S. Gan, and D. Yang, Dominated chain recurrent class with singularities , Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) (to appear), preprint arXiv: · Zbl 1371.37027
[10] M. Campanino, Two remarks on the computer study of differentiable dynamical systems , Comm. Math. Phys. 74 (1980), no. 1, 15-20. · Zbl 0429.58011 · doi:10.1007/BF01197575
[11] S. Crovisier and D. Yang, On the density of singular hyperbolic three-dimensional vector fields: a conjecture of Palis , C. R. Math. Acad. Sci. Paris 353 (2015), no. 1, 85-88. · Zbl 1346.37018 · doi:10.1016/j.crma.2014.10.015
[12] C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds , Dynamical systems and bifurcation theory, Rio de Janeiro, 1985, Pitman Res. Notes Math. Ser., 160, pp. 59-89, Longman Sci. Tech., Harlow, 1987.
[13] S. Gan and D. Yang, Morse-Smale systems and horseshoes for three-dimensional singular flows , preprint, 5 Feb 2013, arXiv: · Zbl 1466.37026
[14] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors , Inst. Hautes Études Sci. Publ. Math. 50 (1979), 59-72. · Zbl 0436.58018 · doi:10.1007/BF02684769
[15] M. Hirsch, C. Pugh, and M. Shub, Invariant manifolds , Lecture Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977. · Zbl 0355.58009
[16] M. Li, S. Gan, and L. Wen, Robustly transitive singular sets via approach of an extended linear Poincaré flow , Discrete Contin. Dyn. Syst. 13 (2005), no. 2, 239-269. · Zbl 1115.37022 · doi:10.3934/dcds.2005.13.239
[17] A. M. Lopez and C. A. Morales, On ergodic measures with negative exponents , (2015, to appear),
[18] R. Mañé, A proof of the \(C^1\) stability conjecture , Inst. Hautes Études Sci. Publ. Math. 66 (1988), 161-210. · Zbl 0678.58022 · doi:10.1007/BF02698931
[19] C. A. Morales, A note on periodic orbits for singular-hyperbolic flows , Discrete Contin. Dyn. Syst. 11 (2004), no. 2-3, 615-619. · Zbl 1073.37031 · doi:10.3934/dcds.2004.11.615
[20] C. A. Morales, M. J. Pacifico, and E. R. Pujals, Singular hyperbolic systems , Proc. Amer. Math. Soc. 127 (1999), no. 11, 3393-3401. · Zbl 0924.58068 · doi:10.1090/S0002-9939-99-04936-9
[21] D. W. Morris, Ratner’s theorems on unipotent flows , Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 2005.
[22] E. R. Pujals and M. Sambarino, Homoclinic tangencies and hyperbolicity for surface diffeomorphisms , Ann. of Math. (2) 151 (2000), 961-1023. · Zbl 0959.37040 · doi:10.2307/121127
[23] R. Saghin and E. Vargas, Invariant measures for Cherry flows , Comm. Math. Phys. 317 (2013), no. 1, 55-67. · Zbl 1261.37012 · doi:10.1007/s00220-012-1611-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.