×

Necessary and sufficient conditions for realizability of point processes. (English) Zbl 1235.60052

The authors study conditions for a pair of (generalized) functions \(\rho_1(\mathbf{r}_1)\) and \(\rho_2(\mathbf{r}_1,\mathbf{r}_2)\), \(\mathbf{r}_i\in X\), to be density and pair correlation function of some point process in a topological space \(X\). In this case, \(\rho_1\) and \(\rho_2\) are said to be realizable. This is an infinite-dimensional version of the classical truncated moments problem, which is solved by reducing it to checking the positivity of some linear functionals and by a subsequent application of the extension theorems for positive functionals. This approach yields very general necessary conditions, which in special cases yield necessary conditions known from the physics literature. The use of the positive extension techniques is a very stimulating and innovative approach in stochastic geometry.
In order to interpret the extended functional as the Lebesgue integral (and thus to come up with sufficient conditions), the authors restrict their attention to processes with hard-core exclusion or point processes with finite third-order moment for the number of points in a compact set. In these cases, the conditions become necessary and sufficient.
The authors also characterise the existence of stationary point processes in the case that the function \(\rho_1\) is constant and \(\rho_2\) depends on the difference of its arguments.

MSC:

60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
60D05 Geometric probability and stochastic geometry
44A60 Moment problems
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics

References:

[1] Aheizer, N. I. and Kreĭn, M. (1962). Some Questions in the Theory of Moments. Translations of Mathematical Monographs 2 . Amer. Math. Soc., Providence, RI. Translated by W. Fleming and D. Prill. · Zbl 0117.32702
[2] Akhiezer, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis . Hafner, New York. Translated by N. Kemmer. · Zbl 0135.33803
[3] Brown, E. N., Kass, R. E. and Mitra, P. P. (2004). Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience 7 456-471.
[4] Caglioti, E., Kuna, T., Lebowitz, J. L. and Speer, E. R. (2006). Point processes with specified low order correlations. Markov Process. Related Fields 12 257-272. · Zbl 1135.60029
[5] Coleman, A. J. (1963). Structure of fermion density matrices. Rev. Modern Phys. 35 668-689. · doi:10.1103/RevModPhys.35.668
[6] Coleman, A. J. and Yukalov, V. I. (2000). Reduced Density Matrices : Coulson’s Challenge. Lecture Notes in Chemistry 72 . Springer, Berlin. · Zbl 0583.60065
[7] Coleman, A. J. (2002). Kummer variety, geometry of N -representability, and phase transitions. Phys. Rev. A (3) 66 022503, 1-8. · doi:10.1103/PhysRevA.66.022503
[8] Crawford, J., Torquato, S. and Stillinger, F. H. (2003). Aspects of correlation function realizability. J. Chem. Phys. 119 7065-7074.
[9] Curto, R. E. and Fialkow, L. A. (2008). An analogue of the Riesz-Haviland theorem for the truncated moment problem. J. Funct. Anal. 255 2709-2731. · Zbl 1158.44003 · doi:10.1016/j.jfa.2008.09.003
[10] Daley, D. J. and Vere-Jones, D. (2003). An Introduction to the Theory of Point Processes. Vol. I : Elementary Theory and Methods , 2nd ed. Springer, New York. · Zbl 1026.60061 · doi:10.1007/b97277
[11] Fuglede, B. (1983). The multidimensional moment problem. Exposition. Math. 1 47-65. · Zbl 0514.44006
[12] Fukuda, M., Braams, B. J., Nakata, M., Overton, M. L., Percus, J. K., Yamashita, M. and Zhao, Z. (2007). Large-scale semidefinite programs in electronic structure calculation. Math. Program. 109 553-580. · Zbl 1278.90495 · doi:10.1007/s10107-006-0027-y
[13] Garrod, C. and Percus, J. K. (1964). Reduction of the N -particle variational problem. J. Math. Phys. 5 1756-1776. · Zbl 0129.44401 · doi:10.1063/1.1704098
[14] Hansen, J. P. and McDonald, I. R. (1987). Theory of Simple Liquids , 2nd ed. Academic Press, New York. · Zbl 0756.00004
[15] Hocking, J. G. and Young, G. S. (1961). Topology . Addison-Wesley, Reading. · Zbl 0135.22701
[16] Jarvis, M. R. and Mitra, P. P. (2004). Sampling properties of the spectrum and coherency of sequences of action potentials. Neural Comput. 13 717-749. · Zbl 1006.62092 · doi:10.1162/089976601300014312
[17] Keren, S., Kfir, H. and Kanter, I. (2006). Possible sets of autocorrelations and the simplex algorithm. J. Phys. A 39 4161-4171. · Zbl 1089.94016 · doi:10.1088/0305-4470/39/16/004
[18] Kreĭn, M. G. and Nudel’man, A. A. (1977). The Markov Moment Problem and Extremal Problems. Translations of Mathematical Monographs 50 . Amer. Math. Soc., Providence, RI. Translated from the Russian by D. Louvish. · Zbl 0361.42014
[19] Kummer, H. (1967). n -representability problem for reduced density matrices. J. Math. Phys. 8 2063-2081. · doi:10.1063/1.1705122
[20] Kuna, T., Lebowitz, J. L. and Speer, E. R. (2007). Realizability of point processes. J. Stat. Phys. 129 417-439. · Zbl 1130.60056 · doi:10.1007/s10955-007-9393-y
[21] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. I. Arch. Ration. Mech. Anal. 59 219-239.
[22] Lenard, A. (1975). States of classical statistical mechanical systems of infinitely many particles. II. Characterization of correlation measures. Arch. Ration. Mech. Anal. 59 241-256.
[23] Lödwin, P.-O. (1955). Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys. Rev. (2) 97 1474-1489. · Zbl 0065.44907 · doi:10.1103/PhysRev.97.1474
[24] Mayer, J. E. (1955). Electron correlation. Phys. Rev. 100 1579-1586. · Zbl 0066.44602 · doi:10.1103/PhysRev.100.1579
[25] Murrell, D. J., Dieckmann, U. and Law, R. (2004). On moment closure for population dynamics in continuous space. J. Theoret. Biol. 229 421-432.
[26] Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Probability and Mathematical Statistics 3 . Academic Press, New York. · Zbl 0153.19101
[27] Percus, J. K. (1964). Kinematic restrictions on the pair density-prototype. Unpublished lecture notes, Courant Institute of Mathematical Sciences.
[28] Percus, J. K. (1964). The pair distribution function in classical statistical mechanics. In The Equilibrium Theory of Classical Fluids ( J. K. Percus, ed.). Benjamin, New York. · Zbl 0127.28302
[29] Reed, M. and Simon, B. (1972). Methods of Modern Mathematical Physics. I. Functional Analysis . Academic Press, New York. · Zbl 0459.46001
[30] Royden, H. L. (1988). Real Analysis , 3rd ed. Macmillan Co., New York. · Zbl 0704.26006
[31] Stillinger, F. H. and Torquato, S. (2004). Pair correlation function realizability: Lattice model implications. J. Phys. Chem. B 108 19589.
[32] Stillinger, F. H. and Torquato, S. (2005). Realizability issues for iso-g(2) processes. Mol. Phys. 103 2943-2949.
[33] Torquato, S. and Stillinger, F. H. (2006). New conjectural lower bounds on the optimal density of sphere packings. Experiment. Math. 15 307-331. · Zbl 1113.52034 · doi:10.1080/10586458.2006.10128964
[34] Torquato, S. and Stillinger, F. H. (2003). Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E (3) 68 041113, 25.
[35] Us, G. F. (1974). A truncated symmetric generalized power moment problem. Ukrain. Mat. Z. 26 348-358, 429. · Zbl 0326.44007 · doi:10.1007/BF01086219
[36] Yamada, M. (1961). Geometrical study of the pair distribution function in the many-body problem. Progr. Theoret. Phys. 25 579-594. · Zbl 0096.44504 · doi:10.1143/PTP.25.579
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.