×

Ground state energy of the dilute spin-polarized Fermi gas: upper bound via cluster expansion. (English) Zbl 07807073

Summary: We prove an upper bound on the ground state energy of the dilute spin-polarized Fermi gas capturing the leading correction to the kinetic energy resulting from repulsive interactions. One of the main ingredients in the proof is a rigorous implementation of the fermionic cluster expansion of M. Gaudin et al. [Nucl. Phys., A 176, No. 2, 237–260 (1971; doi:10.1016/0375-9474(71)90267-3)].

MSC:

81V74 Fermionic systems in quantum theory
13F60 Cluster algebras
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
35B38 Critical points of functionals in context of PDEs (e.g., energy functionals)
78A35 Motion of charged particles

References:

[1] Agerskov, J.; Reuvers, R.; Solovej, J. P., Ground state energy of dilute Bose gases in 1D (2022)
[2] Basti, G.; Cenatiempo, S.; Giuliani, A.; Olgiati, A.; Pasqualetti, G.; Schlein, B., Upper bound for the ground state energy of a dilute Bose gas of hard spheres (2022)
[3] Basti, G.; Cenatiempo, S.; Schlein, B., A new second-order upper bound for the ground state energy of dilute Bose gases, Forum Math. Sigma, 9, e74 (2021) · Zbl 1483.81165
[4] Bertaina, G.; Tarallo, M. G.; Pilati, S., Quantum Monte Carlo study of the role of p-wave interactions in ultracold repulsive Fermi gases, Phys. Rev. A, 107, 5, Article 053305 pp. (2023)
[5] Clark, J. W.; Westhaus, P., Cluster expansions in many-Fermion theory. I. “Factor-cluster” formalisms, J. Math. Phys., 9, 1, 131-148 (1968)
[6] Ding, S.; Zhang, S., Fermi-liquid description of a single-component Fermi gas with p-wave interactions, Phys. Rev. Lett., 123, 7, Article 070404 pp. (2019)
[7] Dyson, F. J., Ground-state energy of a hard-sphere gas, Phys. Rev., 106, 1, 20-26 (1957) · Zbl 0077.23503
[8] Efimov, V. N., A rarefied Fermi gas and the two-body scattering problem, Sov. Phys. JETP, 22, 1, 135 (1966)
[9] Efimov, V. N.; Amus’ya, M. Y., Ground state of a rarefied Fermi gas of rigid spheres, Sov. Phys. JETP, 20, 2, 388 (1965)
[10] Falconi, M.; Giacomelli, E. L.; Hainzl, C.; Porta, M., The dilute Fermi gas via Bogoliubov theory, Ann. Henri Poincaré, 22, 7, 2283-2353 (2021) · Zbl 1471.82012
[11] Fournais, S.; Girardot, T.; Junge, L.; Morin, L.; Olivieri, M., The ground state energy of a two-dimensional Bose gas (2022)
[12] Fournais, S.; Solovej, J. P., The energy of dilute Bose gases, Ann. Math., 192, 3, 893-976 (2020) · Zbl 1455.81050
[13] Fournais, S.; Solovej, J. P., The energy of dilute Bose gases II: the general case, Invent. Math. (2022)
[14] Ganzburg, M. I.; Liflyand, E., The Lebesgue constants of Fourier partial sums, (Abell, M.; Iacob, E.; Stokolos, A.; Taylor, S.; Tikhonov, S.; Zhu, J., Topics in Classical and Modern Analysis. Topics in Classical and Modern Analysis, Applied and Numerical Harmonic Analysis (2019), Birkhäuser: Birkhäuser Cham), 147-158
[15] Gaudin, M.; Gillespie, J.; Ripka, G., Jastrow correlations, Nucl. Phys. A, 176, 2, 237-260 (1971)
[16] Giacomelli, E. L., Bogoliubov theory for the dilute Fermi gas in three dimensions, (Correggi, M.; Falconi, M., Quantum Mathematics II. Quantum Mathematics II, Springer INdAM Series (2023), Springer Nature: Springer Nature Singapore), 313-329
[17] Giacomelli, E. L., An optimal upper bound for the dilute Fermi gas in three dimensions, J. Funct. Anal., 285, 8, Article 110073 pp. (2023) · Zbl 1530.81165
[18] Giuliani, A.; Mastropietro, V.; Rychkov, S., Gentle introduction to rigorous Renormalization Group: a worked fermionic example, J. High Energy Phys., 2021, 1, Article 26 pp. (2021) · Zbl 1459.81081
[19] Hammer, H.-W.; Lee, D., Causality and the effective range expansion, Ann. Phys., 325, 10, 2212-2233 (2010) · Zbl 1198.81184
[20] Huang, K.; Yang, C. N., Quantum-mechanical many-body problem with hard-sphere interaction, Phys. Rev., 105, 3, 767-775 (1957) · Zbl 0077.20905
[21] Iwamoto, F.; Yamada, M., Cluster development method in the quantum mechanics of many particle system, I, Prog. Theor. Phys., 17, 4, 543-555 (1957) · Zbl 0078.19703
[22] Jastrow, R., Many-body problem with strong forces, Phys. Rev., 98, 5, 1479-1484 (1955) · Zbl 0067.44602
[23] Kolomoitsev, Y.; Lomako, T., On the growth of Lebesgue constants for convex polyhedra, Trans. Am. Math. Soc., 370, 10, 6909-6932 (2018) · Zbl 1395.42014
[24] Lee, T. D.; Huang, K.; Yang, C. N., Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties, Phys. Rev., 106, 6, 1135-1145 (1957) · Zbl 0077.45003
[25] Lieb, E. H.; Seiringer, R.; Solovej, J. P., Ground-state energy of the low-density Fermi gas, Phys. Rev. A, 71, 5, Article 053605 pp. (2005)
[26] Lieb, E. H.; Yngvason, J., Ground state energy of the low density Bose gas, Phys. Rev. Lett., 80, 12, 2504-2507 (1998)
[27] Lieb, E. H.; Yngvason, J., The ground state energy of a dilute two-dimensional Bose gas, J. Stat. Phys., 103, 3, 509-526 (2001) · Zbl 1115.82306
[28] Liflyand, E., Lebesgue constants of multiple Fourier series, Online J. Anal. Comb., 1, 5 (2006) · Zbl 1129.42344
[29] Mayer, S.; Seiringer, R., The free energy of the two-dimensional dilute Bose gas. II. Upper bound, J. Math. Phys., 61, 6, Article 061901 pp. (2020) · Zbl 1452.82002
[30] Poghosyan, S.; Ueltschi, D., Abstract cluster expansion with applications to statistical mechanical systems, J. Math. Phys., 50, 5, Article 053509 pp. (2009) · Zbl 1187.82009
[31] Robinson, D. W., The Thermodynamic Pressure in Quantum Statistical Mechanics, Lecture Notes in Physics (1971), Springer: Springer Berlin, Heidelberg
[32] Seiringer, R.; Yngvason, J., Emergence of Haldane pseudo-potentials in systems with short-range interactions, J. Stat. Phys., 181, 2, 448-464 (2020) · Zbl 1447.81228
[33] Ueltschi, D., An improved tree-graph bound, Oberwolfach Rep., 14, 1, 417-452 (2018)
[34] Wellenhofer, C.; Drischler, C.; Schwenk, A., Dilute Fermi gas at fourth order in effective field theory, Phys. Lett. B, 802, Article 135247 pp. (2020)
[35] Westhaus, P.; Clark, J. W., Cluster expansions in many-Fermion theory. II. Rearrangements of primitive decomposition equations, J. Math. Phys., 9, 1, 149-154 (1968)
[36] Yau, H.-T.; Yin, J., The second order upper bound for the ground energy of a Bose gas, J. Stat. Phys., 136, 3, 453-503 (2009) · Zbl 1200.82002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.