×

Quantitative analysis of decoherence of entangled microwave signals in free space. (English) Zbl 1508.81161

Summary: Entangled microwave signals are the new quantum information resource of microwave frequency. Based on the evolution model of two-mode squeezed vacuum state with Fokker-Planck equation, we consider the absorption of atmospheric gas and the attenuation of cloud, rain and fog in the typical environment, and then investigate decoherence of entangled microwave signals. To quantify the entanglement degree using logarithmic negativity, we quantitatively discuss the relation of the entanglement degree and propagation distance and estimate the effective operating distance of entangled microwave signals in free space. Results demonstrate that entangled microwave signals can still maintain a higher entanglement degree when the propagation distance is in the order of 10 km, which prove the availability.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
Full Text: DOI

References:

[1] Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865-931 (2009) · Zbl 1205.81012
[2] Nakamura, Y., Yamamoto, T.: Breakthroughs in photonics 2012: breakthroughs in microwave quantum photonics in superconducting circuits. IEEE Photonics J. 5(2), 0701406 (2013)
[3] Roch, N., Flurin, E., Nguyen, F., Morfin, P., Campagne-Ibarcq, P., Devoret, M.H., Huard, B.: Widely tunable, non-degenerate three-wave mixing microwave device operating near the quantum limit. Phys. Rev. Lett. 108(14), 147701 (2012)
[4] Beltran, M.A.C.: Development of a Josephson parametric amplifier for the preparation and detection of nonclassical states of microwave fields. University of Colorado, Boulder (2010)
[5] Yamamoto, T., Inomata, K., Watanabe, M., Matsuba, K., Miyazaki, T., Oliver, W.D., Nakamura, Y., Tsai, J.S.: Flux-driven Josephson parametric amplifier. Appl. Phys. Lett. 93(4), 042510 (2008)
[6] Zhong, L., Menzel, E.P., Di, Candia R., Eder, P., Ihmig, M., Baust, A., Haeberlein, M., Hoffmann, E., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Deppe, F., Marx, A., Gross, R.: Squeezing with a flux-driven Josephson parametric amplifier. New J. Phys. 15(12), 125013-125036 (2013)
[7] Eichler, C., Bozyigit, D., Lang, C., Baur, M., Steffen, L., Fink, J.M., Filipp, S., Wallraff, A.: Observation of two-mode squeezing in the microwave frequency domain. Phys. Rev. Lett. 107(11), 113601 (2011)
[8] Menzel, E.P., Candia, R.D., Deppe, F., Eder, P., Zhong, L., Ihmig, M., Haeberlein, M., Baust, A., Hoffmann, E., Ballester, D., Inomata, K., Yamamoto, T., Nakamura, Y., Solano, E., Marx, A., Gross, R.: Path entanglement of continuous-variable quantum microwaves. Phys. Rev. Lett. 109(25), 250502 (2012)
[9] Flurin, E., Roch, N., Mallet, F., Devoret, M.H., Huard, B.: Generating entangled microwave radiation over two transmission lines. Phys. Rev. Lett. 109(18), 183901 (2012)
[10] Su, X.L., Jia, X.J., Ch, Peng K.: Quantum information processing with continuous variables based on quantum state of optical field. Prog. Phys. 36(4), 101-117 (2016)
[11] Huard, B.: Quantum microwaves. C. R. Phys. 17, 679-683 (2016)
[12] Barzanjeh, S., Guha, S., Weedbrook, C., Vitali, D., Shapiro, J.H., Pirandola, S.: Microwave quantum illumination. Phys. Rev. Lett. 114(8), 080503 (2015)
[13] Li, X., Wu, D.W., Wei, T.L., Miao, Q., Zhu, H.N., Yang, C.Y.: A radio navigation angle measurement method with entangled microwave signals. AIP Adv. 8(6), 065217 (2018)
[14] Li, X., Wu, D.W., Miao, Q., Zhu, H.N., Wei, T.L.: A navigation ranging scheme with true random entangled microwave signals. IEEE Photonics J. 10(6), 6101107 (2018)
[15] Flurin, E.: The Josephson mixer: a Swiss army knife for microwave quantum optics. PSL Research University, Paris (2014)
[16] Braunstein, S.L., Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513-577 (2005) · Zbl 1205.81010
[17] Prauzner-Bechcicki, J.S.: Two-mode squeezed vacuum state coupled to the common thermal reservoir. J. Phys. A 37(15), L173-L181 (2004) · Zbl 1065.81560
[18] Liu, K.L., Goan, H.S.: Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments. Phys. Rev. A 76(2), 022312 (2007)
[19] Hiroshima, T.: Decoherence and entanglement in two-mode squeezed vacuum states. Phys. Rev. A 63(2), 022305 (2001)
[20] Ren, Y.C., Wang, S., Fan, H.Y., Chen, F.: Ket-Bra entangled state method for solving master equation of finite-level system. Quantum Inf. Process. 16, 270 (2017) · Zbl 1387.81079
[21] Xue, S., Petersen, L.R.: Realizing the dynamics of a non-Markovian quantum system by Markovian coupled oscillators: a Green’s function-based root locus approach. Quantum Inf. Process. 15(2), 1001-1018 (2016) · Zbl 1333.81209
[22] Vasile, R., Olivares, S., Paris, M.G.A., Maniscalco, S.: Continuous-variable-entanglement dynamics in structured reservoirs. Phys. Rev. A 80(6), 062324 (2009)
[23] Xiang, S.H., Song, K.H., Wen, W., Shi, Z.G.: Quantum entanglement and nonlocality properties of two-mode squeezed thermal states in a common-reservoir model. Commun. Theor. Phys. 55(2), 232-238 (2011) · Zbl 1264.81053
[24] Xie, Y.X.: Principle and Application of Radio Wave Propagation, p. 21. Posts & Telecom Press, Beijing (2008)
[25] Mao, J.J.: Microwave Technique and Antenna, p. 409. Science Press, Beijing (2006)
[26] Menzel, E.P.: Propagating quantum microwaves: dual-path state reconstruction and path entanglement. Technical University Munich, Munich (2013)
[27] Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65(3), 032314 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.