×

Multi-pulse jumping orbits and homoclinic trees in motion of a simply supported rectangular metallic plate. (English) Zbl 1271.74230

Summary: The global bifurcations in mode interaction of a simply supported rectangular metallic plate subjected to a transverse harmonic excitation are investigated with the case of the 1:1 internal resonance, the modulation equations representing the evolution of the amplitudes and phases of the interacting normal modes exhibit complex dynamics. The energy-phase method proposed by G. Haller and S. Wiggins [Arch. Ration. Mech. Anal. 130, No. 1, 25–101 (1995; Zbl 0829.58016)] is employed to analyze the global bifurcations for the rectangular metallic plate. The results obtained here indicate that there exist the Silnikov-type multi-pulse orbits homoclinic to certain invariant sets for the resonant case in both Hamiltonian and dissipative perturbations, which imply that chaotic motions may occur for this class of systems. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. To illustrate the theoretical predictions, we present visualizations of these complicated structures and numerical evidence of chaotic motions.

MSC:

74H60 Dynamical bifurcation of solutions to dynamical problems in solid mechanics
74K20 Plates

Citations:

Zbl 0829.58016
Full Text: DOI

References:

[1] Sathayamorthy M.: Nonlinear vibration analysis of plates: a review and survey of current developments. Appl. Mech. Rev. 40, 1553–1561 (1987) · doi:10.1115/1.3149544
[2] Yeh F.H., Liu W.H.: Nonlinear analysis of rectangular orthotropic plates. Int. J. Mech. Sci. 33, 563–578 (1991) · Zbl 0747.73033 · doi:10.1016/0020-7403(91)90018-X
[3] Sridhar S., Mook D.T., Nayfeh A.H.: Non-linear resonances in the forced responses of plate, part I: symmetric responses of circular plates. J. Sound Vib. 41, 359–373 (1975) · Zbl 0339.73038 · doi:10.1016/S0022-460X(75)80182-9
[4] Sridhar S., Mook D.T., Nayfeh A.H.: Non-linear resonances in the forced responses of plate, part II: asymmetric responses of circular plates. J. Sound Vib. 59, 159–170 (1978) · Zbl 0382.73049 · doi:10.1016/0022-460X(78)90497-2
[5] Hadian J., Nayfeh A.H.: Modal interaction in circular plates. J. Sound Vib. 142, 279–292 (1990) · doi:10.1016/0022-460X(90)90557-G
[6] Yang X.L., Sethna P.R.: Local and global bifurcations in the parametrically excited vibrations of nearly square plates. Int. J. Non-Linear Mech. 26, 199–220 (1991) · Zbl 0734.73046 · doi:10.1016/0020-7462(91)90052-U
[7] Chin, C., Nayfeh, A.H.: Bifurcation and chaos in externally excited circular cylindrical shells. In: Proceedings of the 36th Structures, Structural Dynamics, and Materials Conference, pp. 1–11. New Orleans, Louisiana (1995) · Zbl 0885.73029
[8] Elbeyli O., Anlas G.: The nonlinear response of a simply supported rectangular metallic plate to transverse harmonic excitation. J. Appl. Mech. 67, 621–626 (2000) · Zbl 1110.74427 · doi:10.1115/1.1308579
[9] Anlas G., Elbeyli O.: Nonlinear vibrations of a simply supported rectangular metallic plate subjected to transverse harmonic excitation in the presence of a one-to-one internal resonance. Nonlinear Dyn. 30, 1–28 (2002) · Zbl 1042.74020 · doi:10.1023/A:1020362725706
[10] Touzé C., Thomas O., Chaigne A.: Asymmetric non-linear forced vibrations of free-edge circular plates. Part I: theory. J. Sound Vib. 258, 649–676 (2002) · doi:10.1006/jsvi.2002.5143
[11] Thomas O., Touzé C., Chaigne A.: Asymmetric non-linear forced vibrations of free-edge circular plates. Part II: experiments. J. Sound Vib. 265, 1075–1101 (2003) · doi:10.1016/S0022-460X(02)01564-X
[12] Yeo M.H., Lee W.K.: Evidence of global bifurcations of an imperfect circular plate. J. Sound Vib. 293, 138–155 (2006) · doi:10.1016/j.jsv.2005.09.035
[13] Samoylenko S.B., Lee W.K.: Global bifurcations and chaos in a harmonically excited and undamped circular plate. Nonlinear Dyn. 47, 405–419 (2007) · Zbl 1180.74033 · doi:10.1007/s11071-006-9039-7
[14] Tong X., Tabarrok B.: Melnikov’s method for rigid bodies subject to small perturbation torques. Arch. Appl. Mech. 66, 215–230 (1996) · Zbl 0846.70009 · doi:10.1007/s004190050062
[15] Ravindra B., Zhu W.D.: Low-dimensional chaotic response of axially accelerating continuum in the supercritical regime. Arch. Appl. Mech. 68, 195–205 (1998) · Zbl 0907.73034 · doi:10.1007/s004190050157
[16] Wang, Y.G., Song, H.F., Li, D., Wang, J.: Bifurcations and chaos in a periodic time-varying temperature-excited bimetallic shallow shell of revolution. Arch. Appl. Mech. (2009). doi: 10.1007/s00419-009-0341-y · Zbl 1271.74232
[17] Kovačič G., Wiggins S.: Orbits homoclinic to resonances, with an application to chaos in a model of the forced and damped sine-Gordon equation. Phys. D 57, 185–225 (1992) · Zbl 0755.35118 · doi:10.1016/0167-2789(92)90092-2
[18] Haller G., Wiggins S.: N-pulse homoclinic orbits in perturbations of resonant Hamiltonian systems. Arch. Ration. Mech. Anal. 130, 25–101 (1995) · Zbl 0829.58016 · doi:10.1007/BF00375655
[19] Haller G.: Chaos near resonance. Springer, New York (1999) · Zbl 1024.37002
[20] Feng Z.C., Wiggins S.: On the existence of chaos in a class of two-degree-of-freedom, damped parametrically forced mechanical systems with broken O(2) symmetry. ZAMP 44, 201–248 (1993) · Zbl 0786.34050 · doi:10.1007/BF00914282
[21] Feng Z.C., Sethna P.R.: Global bifurcation in motions of parametrically excited thin plates. Nonlinear Dyn. 4, 398–408 (1993)
[22] Haller G., Wiggins S.: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forces nonlinear Schrödinger equation. Phys. D 85, 311–347 (1995) · Zbl 0890.58048 · doi:10.1016/0167-2789(95)00120-S
[23] Malhotra N., Namachchivaya N.S.: Chaotic motion of shallow arch structures under 1:1 resonance. ASCE J. Eng. Mech. 123, 620–627 (1997) · doi:10.1061/(ASCE)0733-9399(1997)123:6(620)
[24] Feng Z.C., Liew K.M.: Global bifurcations in parametrically excited systems with zero-to-one internal resonance. Nonlinear Dyn. 21, 249–263 (2000) · Zbl 0968.70018 · doi:10.1023/A:1008364914446
[25] Samaranayake G., Samaranayake S., Bajaj A.K.: Non-resonant and resonant chaotic dynamics in externally excited cyclic system. Acta Mech. 150, 139–160 (2001) · Zbl 1068.70025 · doi:10.1007/BF01181808
[26] Wang M.N., Xu Z.Y.: On the homoclinic orbits in a class of two-degree-of-freedom systems under the resonance conditions. Appl. Math. Mech. 22, 340–352 (2001) · Zbl 1007.70018 · doi:10.1023/A:1015518822779
[27] Zhang W., Wang F.X., Yao M.H.: Global bifurcations and chaotic dynamics in nonlinear nonplanar oscillations of a parametrically excited cantilever beam. Nonlinear Dyn. 40, 251–279 (2005) · Zbl 1142.74346 · doi:10.1007/s11071-005-6435-3
[28] McDonald R.J., Sri Namachchivaya N.: Pipes conveying pulsating fluid near a 0:1 resonance: global bifurcations. J. Fluids Struct. 21, 665–687 (2005) · doi:10.1016/j.jfluidstructs.2005.07.015
[29] Zhang W., Yao M.H.: Multi-pulse and chaotic dynamics in motion of parametrically excited viscoelastic moving belt. Chaos Solitons Fractals 28, 42–66 (2006) · Zbl 1140.74461 · doi:10.1016/j.chaos.2005.05.005
[30] Wiggins S.: Global bifurcations and chaos. Springer, New York (1988) · Zbl 0661.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.