×

Multi-mode resource-constrained project scheduling problem with material ordering under bonus-penalty policies. (English) Zbl 1360.90007

Summary: This study emphasizes that project scheduling and material ordering (time and quantity of an order) must be considered simultaneously to minimize the total cost, as setting the material ordering decisions after the project scheduling phase leads to non-optimal solutions. Hence, this paper mathematically formulates the model for the multi-mode resource-constrained project scheduling with material ordering (MRCPSMO) problem. In order to be more realistic, bonus and penalty policies are included for the project. The objective function of the model consists of four elements: the material holding cost, the material ordering cost, the bonus paid by the client and the cost of delay in the project completion. Since MRCPSMO is NP-hard, the paper proposes three hybrid meta-heuristic algorithms called PSO-GA, GA-GA and SA-GA to obtain near-optimal solutions. In addition, the design of experiments and Taguchi method is used to tune the algorithms’ parameters. The proposed algorithms consist of two components: an outside search, in which the algorithm searches for the best schedule and mode assignment, and the inside search, which determines the time and quantity of orders of the nonrenewable resources. First, a comparison is made for each individual component with the exact or best solutions available in the literature. Then, a set of standard PROGEN test problems is solved by the proposed hybrid algorithms under fixed CPU time. The results reveal that the PSO-GA algorithm outperforms both GA-GA and SA-GA algorithms and provides good solutions in a reasonable time.

MSC:

90-02 Research exposition (monographs, survey articles) pertaining to operations research and mathematical programming
90B35 Deterministic scheduling theory in operations research
90B05 Inventory, storage, reservoirs
90C11 Mixed integer programming

Software:

PSPLIB
Full Text: DOI

References:

[1] Alcaraz J, Maroto C, Ruiz R (2003) Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. J Oper Res Soc 54:614-626 · Zbl 1095.90541 · doi:10.1057/palgrave.jors.2601563
[2] Aquilano NJ, Smith DE (1980) A formal set of algorithms for project scheduling with critical path method material requirements planning. J Oper Manag 1(2):57-67 · doi:10.1016/0272-6963(80)90013-3
[3] Bergantinos G, Sanchez E (2002) How to distribute costs associated with a delayed project. Ann Oper Res 109:159-174 · Zbl 1040.91008 · doi:10.1023/A:1016300218643
[4] Boctor FF (1993) Heuristics for scheduling projects with resource restrictions and several resource-duration modes. Int J Prod Res 31:2547-2558 · doi:10.1080/00207549308956882
[5] Boctor FF (1996) A new and efficient heuristic for scheduling projects with resource restrictions and multiple execution modes. Euro J Oper Res 90:349-361 · Zbl 0916.90143 · doi:10.1016/0377-2217(95)00359-2
[6] Branzei R, Ferrari G, Fragnelli V, Tijs S (2002) Two approaches to the problem of sharing delay costs in joint projects. Ann Oper Res 109:359-374 · Zbl 1005.91010 · doi:10.1023/A:1016372707256
[7] Callerman TE, Whybark DC (1977) Purchase quantity discounts in an MRP environment. Discussion paper, vol. 72, School of Business, Indiana · Zbl 0493.90042
[8] Castro J, Gomez D, Tejada J (2007) A project game for PERT networks. Oper Res Lett 35:791-798 · Zbl 1180.90030 · doi:10.1016/j.orl.2007.01.003
[9] Castro J, Gomez D, Tejada J (2008) A polynomial rule for the problem of sharing delay costs in PERT networks. Comp Oper Res 35:2376-2387 · Zbl 1180.90031 · doi:10.1016/j.cor.2006.11.003
[10] Chung C, Chiang DT, Lu C (1987) An optimal algorithm for the quantity discount problem. J Oper Manag 7(1-2):165-177 · doi:10.1016/0272-6963(87)90015-5
[11] Coelho J, Vanhoucke M (2011) Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. Euro J Oper Res 213:73-82 · Zbl 1237.90086 · doi:10.1016/j.ejor.2011.03.019
[12] Damak N, Jarboui B, Siarry P, Loukil T (2009) Differential evolution for solving multi-mode resource-constrained project scheduling problems. Comp Oper Res 36:2653-2659 · Zbl 1179.90134 · doi:10.1016/j.cor.2008.11.010
[13] Dodin B, Elimam AA (2001) Integrated project scheduling and material planning with variable activity duration and rewards. IIE Trans 33:1005-1018 · doi:10.1023/A:1010994519405
[14] Elloumi S, Fortemps P (2010) A hybrid rank-based evolutionary algorithm applied to multi-mode resourceconstrained project scheduling problem. Euro J Oper Res 205(1):31-41 · Zbl 1188.90093
[15] Erabsi A, Sepil C (1999) A modified heuristic procedure for materials management in project networks. Int J Indus Eng Theory 6(2):132-140
[16] Estévez-Fernández A, Borm P, Hamers H (2007) Project games. Int J Game Theory 36:149-176 · Zbl 1130.91011 · doi:10.1007/s00182-006-0058-x
[17] Gaafar L (2006) Applying genetic algorithms to dynamic lot sizing with batch ordering. Comp Indus Eng 51:433-444 · doi:10.1016/j.cie.2006.08.006
[18] Hartmann S (2001) Project scheduling with multiple modes: a genetic algorithm. Ann Oper Res 102:111-135 · Zbl 1024.90039 · doi:10.1023/A:1010902015091
[19] Hartmann S, Sprecher A (1996) A note on hierarchical models for multi-project planning and scheduling. Euro J Oper Res 94:377-383 · Zbl 0953.90518 · doi:10.1016/0377-2217(95)00158-1
[20] He Z, Xu Y (2008) Multi-mode project payment scheduling problems with bonus-penalty structure. Euro J Oper Res 189:1191-1207 · Zbl 1146.90414 · doi:10.1016/j.ejor.2006.07.053
[21] Holland J (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor · Zbl 0317.68006
[22] Jarboui B, Damak N, Siarry P, Rebai A (2008) A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Appl Math Comput 195:299-308 · Zbl 1180.90125
[23] Józefowska J, Mika M, Rózycki R, Waligóra G, Weglarz J (2001) Simulated annealing for multi-mode resource-constrained project scheduling. Ann Oper Res 102:137-155 · Zbl 0990.90513 · doi:10.1023/A:1010954031930
[24] Kelly, JE; Scheduling, Industrial (ed.), The critical-path method: resources planning and scheduling, 347-365 (1963), New York
[25] Kelley JE, Walker MR (1959) Critical-path planning and scheduling. In: Proceedings of the Eastern Joint Computer Conference. Boston, Massachusetts, pp 160-173 · Zbl 1130.91011
[26] Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of the IEEE Conference on Neural Networks. Piscataway, NJ, pp 1942-1948
[27] Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671-680 · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[28] Kolisch R, Drexl A (1997) Local search for non-preemptive multi-mode resource-constrained project scheduling. IIE Trans 29:987-999
[29] Kolisch, R.; Hartmann, S.; Weglarz, J. (ed.), Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis, 147-178 (1999), Boston · doi:10.1007/978-1-4615-5533-9_7
[30] Kolisch R, Sprecher A (1996) PSPLIB- a project scheduling problem library. Euro J Oper Res 96(1):205-216 · Zbl 0947.90587 · doi:10.1016/S0377-2217(96)00170-1
[31] Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manag Sci 41:1693-1703 · Zbl 0870.90070 · doi:10.1287/mnsc.41.10.1693
[32] Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a technique for research and development program evaluation. Oper Res 7(5):646-669 · Zbl 1255.90070 · doi:10.1287/opre.7.5.646
[33] Mika M, Waligóra G, Weglarz J (2005) Simulated annealing and Tabu-search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models. Euro J Oper Res 164:639-668 · Zbl 1061.90048 · doi:10.1016/j.ejor.2003.10.053
[34] Mika M, Waligóra G, Weglarz J (2008) Tabu search for multi-mode resource-constrained project scheduling with schedule-dependent setup times. Euro J Oper Res 187:1238-1250 · Zbl 1137.90508 · doi:10.1016/j.ejor.2006.06.069
[35] Özdamar L (1999) A genetic algorithm approach to a general category project scheduling problem, Part C: applications and Reviews, Man and Cybernetics. IEEE Trans Syst 29:44-59
[36] Patterson, JH; Słowinski, R.; Talbot, FB; Weglarz, J.; Slowinski, R. (ed.); Weglarz, J. (ed.), An algorithm for a general class of precedence and resource constrained scheduling problems, 3-28 (1989), Amsterdam · doi:10.1016/B978-0-444-87358-3.50005-5
[37] Phadke MS (1989) Quality engineering using robust design. Prentice Hall, Englewood Cliffs
[38] Sajadieh MS, Shadrokh S, Hassanzadeh F (2009) Concurrent project scheduling and material planning: a genetic algorithm approach. Scientia Iranica 16:91-99
[39] Schmitt T, Faaland B (2004) Scheduling recurrent construction. Naval Res Logist 51(8):1102-1128 · Zbl 1055.90037 · doi:10.1002/nav.20043
[40] Shadrokh S, Kianfar F (2007) A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. Euro J Oper Res 181:86-101 · Zbl 1121.90062 · doi:10.1016/j.ejor.2006.03.056
[41] Shahsavar M, Niaki STA, Najafi AA (2010) An efficient genetic algorithm to maximize net present value of project payments under inflation and bonus-penalty policy in resource investment problem. Adv Eng Softw 41(7):1023-1030 · Zbl 1194.90057 · doi:10.1016/j.advengsoft.2010.03.002
[42] Silver EA, Meal HC (1973) A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and desecrate opportunities for replenishment. Produc Invent Manag 14(2):64-74
[43] Slowinski R (1980) Two approaches to problems of resource allocation among project activities—a comparative study. J Oper Res Soc 8:711-723 · Zbl 0439.90042
[44] Smith-Daniels DE, Aquilano NJ (1984) Constrained resource project scheduling subject to material constraints. J Oper Manag 4:369-388 · doi:10.1016/0272-6963(84)90022-6
[45] Smith-Daniels DE, Smith-Daniels VL (1987) Optimal project scheduling with materials ordering. IIE Trans 19(4):122-129 · doi:10.1080/07408178708975378
[46] Speranza M, Vercellis C (1993) Hierarchical models for multi-project planning and scheduling. Euro J Oper Res 64:312-325 · Zbl 0779.90046 · doi:10.1016/0377-2217(93)90185-P
[47] Sprecher A, Drexl A (1998) Solving multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. Euro J Oper Res 107:431-450 · Zbl 0943.90042 · doi:10.1016/S0377-2217(97)00348-2
[48] Taguchi G (1986) Introduction to quality engineering. White Plains, Asian Productivity Organization, New York
[49] Taguchi G, Wu Y (1980) Introduction to off-line quality control. Central Japan Quality Control Association, Nagoya
[50] Talbot F (1982) Resource-constrained project scheduling with time-resource tradeoffs: the non-preemptive case. Manag Sci 28(10):1197-1210 · Zbl 0493.90042 · doi:10.1287/mnsc.28.10.1197
[51] Van Peteghem V, Vanhoucke M (2010) Genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Euro J Oper Res 201:409-418 · Zbl 1175.90205 · doi:10.1016/j.ejor.2009.03.034
[52] Van Peteghem V, Vanhoucke M (2011) Using resource scarceness characteristics to solve the multi-mode resource-constrained project scheduling problem. J Heuristics 17(6):705-728 · Zbl 1237.90100 · doi:10.1007/s10732-010-9152-0
[53] Wagner HM, Within TM (1985) Dynamic version of economic lot size model. Manag Sci 5(1):89-96 · Zbl 0977.90500 · doi:10.1287/mnsc.5.1.89
[54] Wang L, Fang C (2011) An effective shuffled frog-leaping algorithm for multi-mode resource-constrained project scheduling problem. Inform Sci 181:4804-4822 · Zbl 1242.90082 · doi:10.1016/j.ins.2011.06.014
[55] Weglarz J, Józefowska J, Mika M, Waligóra G (2011) Project scheduling with finite or infinite number of activity processing modes—a survey. Euro J Oper Res 208:177-205 · Zbl 1208.90082 · doi:10.1016/j.ejor.2010.03.037
[56] Zhang H, Tam CM, Li H (2006) Multi mode project scheduling based on particle swarm optimization. Comp Aided Civil Infrastruct Eng 21:93-103 · doi:10.1111/j.1467-8667.2005.00420.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.