×

Routes toward chaos in a memristor-based Shinriki circuit. (English) Zbl 07881249


MSC:

37-XX Dynamical systems and ergodic theory
34-XX Ordinary differential equations
Full Text: DOI

References:

[1] Chua, L. O., Memristor—The missing circuit element, IEEE Trans. Circuit Theory, 18, 507-519, 1971 · doi:10.1109/TCT.1971.1083337
[2] Strukov, D. B.; Snider, G. S.; Stewart, D. R.; Williams, R. S., The missing memristors found, Nature, 453, 80-83, 2008 · doi:10.1038/nature06932
[3] Amirany, A.; Moaiyeri, M. H.; Jafari, K., Nonvolatile associative memory design based on spintronic synapses and CNTFET neurons, IEEE Trans. Emerging Top. Comput., 10, 428-437, 2022 · doi:10.1109/TETC.2020.3026179
[4] Saleem, A.; Simanjuntak, F. M.; Chandrasekaran, S.; Rajasekaran, S.; Tseng, T. Y.; Prodromakis, T., Transformation of digital to analog switching in TaOx-based memristor device for neuromorphic applications, Appl. Phys. Lett., 118, 112103, 2021 · doi:10.1063/5.0041808
[5] Zhi, Y.; Wajid, H.; Venkatasubramanian, V. M.; Ji, W.; Panciatici, P.; Xavier, F.; Gilles, T., Computational methods for nonlinear analysis of Hopf bifurcations in power system models, Electr. Power Syst. Res., 212, 108574, 2022 · doi:10.1016/j.epsr.2022.108574
[6] Ramakrishnan, B.; Njimah, O. M.; Kengne, J.; Rajagopal, K., Dynamic analysis of a memristive diode bridge-based higher order autonomous, Eur. Phys. J. Plus, 137, 787, 2022 · doi:10.1140/epjp/s13360-022-02981-4
[7] Li, C. L.; Li, H. D.; Xie, W. X.; Du, J. R., A S-type bistable locally active memristor model and its analog implementation in an oscillator circuit, Nonlinear Dyn., 106, 1041-1058, 2021 · doi:10.1007/s11071-021-06814-4
[8] Ying, J. J.; Liang, Y.; Wang, G. Y., Action potential and chaos near the edge of chaos in memristive circuits, Chaos, 32, 093101, 2022 · Zbl 07878932 · doi:10.1063/5.0097075
[9] Peng, G. Y.; Min, F. H., Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit, Nonlinear Dyn., 90, 1607-1625, 2017 · doi:10.1007/s11071-017-3752-2
[10] Sprott, J. C.; Munmuangsaen, B., Comment on ‘A hidden chaotic attractor in the classical Lorenz system’, Chaos Solitons Fractals, 113, 261-262, 2018 · Zbl 1404.34070 · doi:10.1016/j.chaos.2018.06.007
[11] Shinriki, M.; Yamamoto, M.; Mori, S., Multimode oscillations in a modified van der Pol oscillator containing a positive nonlinear conductance, Proc. IEEE, 69, 394-395, 1981 · doi:10.1109/PROC.1981.11973
[12] Freire, E.; Franquelo, L. G.; Aracil, J., Periodicity and chaos in an autonomous electrical system, IEEE Trans. Circuit Syst., 31, 237-247, 1984 · doi:10.1109/TCS.1984.1085496
[13] Werner, J. P.; Stemler, T.; Benner, H., Crisis and stochastic resonance in Shinriki’s circuit, Physica D, 237, 859-865, 2008 · doi:10.1016/j.physd.2007.11.009
[14] Kengne, J.; Njitacke Tabekouen, Z.; Kamdoum Tamba, V.; Nguomkam Negou, A., Periodicity, chaos, and multiple attractors in a memristor-based Shinriki’s circuit, Chaos, 25, 103126, 2015 · Zbl 1374.94910 · doi:10.1063/1.4934653
[15] Ramadoss, J.; Kengne, J.; Kengnou Telem, A. N.; Rajagopal, K., Broken symmetry and dynamics of a memristive diodes bridge-based Shinriki oscillator, Physica. A, 588, 126562, 2021 · Zbl 07483663 · doi:10.1016/j.physa.2021.126562
[16] Jin, Q. S.; Min, F. H.; Li, C. B., Infinitely many coexisting attractors of a dual memristive Shinriki oscillator and its FPGA digital implementation, Chin. J. Phys., 62, 342-357, 2019 · Zbl 07828464 · doi:10.1016/j.cjph.2019.09.035
[17] Min, F. H.; Chen, Y. Z.; Lu, L.; Li, X. Y., Extreme multistability and antimonotonicity in a Shinriki oscillator with two flux-controlled memristors, Int. J. Bifurcation Chaos, 31, 2150167, 2021 · Zbl 1478.34060 · doi:10.1142/S0218127421501674
[18] Cheng, Y. Z.; Min, F. H.; Rui, Z.; Dou, Y. P., Firing multistability, symmetry, bubbles of a Shinriki oscillator with MEM-elements, Chin. J. Phys., 74, 157-174, 2021 · Zbl 07839815 · doi:10.1016/j.cjph.2021.09.002
[19] Volos, C. K.; Pham, V. T.; Nistazakis, H. E.; Stouboulos, I. N., A dream that has come ture: Chaos from a nonlinear circuit with a real memristor, Int. J. Bifurcation Chaos, 30, 2030036, 2020 · Zbl 1457.78014 · doi:10.1142/S0218127420300360
[20] Luo, A. C. J., Discretization and Implicit Mapping Dynamics, 2015, Springer: Springer, Berlin · Zbl 1319.70025
[21] Luo, A. C. J., Periodic flows to chaos based on discrete implicit mappings of continues nonlinear systems, Int. J. Bifurcation Chaos, 25, 1550044, 2015 · Zbl 1314.37016 · doi:10.1142/S0218127415500443
[22] Guo, Y.; Luo, A. C. J., On complex periodic motions and bifurcations in a periodically forced, damped, hardening Duffing oscillator, Chaos, Solitons Fractals, 81, 378-399, 2015 · Zbl 1355.34060 · doi:10.1016/j.chaos.2015.10.004
[23] Luo, A. C. J.; Huang, J. Z., Analytical solutions for asymmetric period motions to chaos in a hardening Duffing oscillator, Nonlinear Dyn., 72, 417-438, 2013 · doi:10.1007/s11071-012-0725-3
[24] Luo, A. C. J.; Xing, S. Y., Bifurcation trees of period-3 motions to chaos in a time-delayed Duffing oscillator, Nonlinear Dyn., 88, 2831-2862, 2017 · Zbl 1398.35123 · doi:10.1007/s11071-017-3415-3
[25] Xu, Y. Y.; Luo, A. C. J., Independent period-2 motions to chaos in a van der Pol-Duffing oscillator, Int. J. Bifurcation Chaos, 30, 2030045, 2020 · Zbl 1471.34072 · doi:10.1142/S0218127420300451
[26] Guo, S.; Luo, A. C. J., On infinite homoclinic orbits induced by unstable periodic orbits in the Lorenz system, Chaos, 31, 043106, 2021 · Zbl 1469.37016 · doi:10.1063/5.0044161
[27] Guo, C.; Luo, A. C. J., Higher-Order complex periodic motions in a nonlinear, electromagnetically tuned mass damper system, Int. J. Bifurcation Chaos, 32, 2250169, 2022 · Zbl 1501.70008 · doi:10.1142/S0218127422501693
[28] Guo, Y.; Luo, A. C. J., Period-3 motions to chaos in a periodically forced nonlinear-spring pendulum, Chaos, 32, 103129, 2022 · Zbl 07879599 · doi:10.1063/5.0121990
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.