×

Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach. (English) Zbl 1503.35271

Summary: In this paper, the problem of synchronization of a class of spatiotemporal fractional-order partial differential systems is studied. Subject to homogeneous Neumann boundary conditions and using fractional Lyapunov approach, nonlinear and linear control schemes have been proposed to synchronize coupled general fractional reaction-diffusion systems. As a numerical application, we investigate complete synchronization behaviors of coupled fractional Lengyel-Epstein systems.

MSC:

35R11 Fractional partial differential equations
35A15 Variational methods applied to PDEs
35K57 Reaction-diffusion equations

References:

[1] Pikovsky, M., Rosenblum, M., Kurths, J.: Synchronization a Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001) · Zbl 0993.37002 · doi:10.1017/CBO9780511755743
[2] Luo, A.: A theory for synchronization of dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 14, 1901-1951 (2009) · Zbl 1221.37218 · doi:10.1016/j.cnsns.2008.07.002
[3] Li, X., Leung, A., Han, X., Liu, X., Chu, Y.: Complete (anti-)synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 63, 263-275 (2011) · Zbl 1215.93074 · doi:10.1007/s11071-010-9802-7
[4] Qun, L., Hai-Peng, P., Ling-Yu, X., Xian, Y.: Lag synchronization of coupled multidelay systems. Math. Probl. Eng. 2012, 106830 (2012) · Zbl 1264.93006 · doi:10.1155/2012/106830
[5] Cai, G., Hu, P., Li, Y.: Modified function lag projective synchronization of a financial hyperchaotic system. Nonlinear Dyn. 69, 1457-1464 (2012) · Zbl 1257.37053 · doi:10.1007/s11071-012-0361-y
[6] Ouannas, A., Odibat, Z.: Generalized synchronization of different dimensional chaotic dynamical systems in discrete time. Nonlinear Dyn. 81, 765-771 (2015) · Zbl 1347.34086 · doi:10.1007/s11071-015-2026-0
[7] Ouannas, A., Azar, A., Vaidyanathan, S.: On a simple approach for Q-S synchronization of chaotic dynamical systems in continuous-time. Int. J. Comput. Sci. Math. 8, 20-27 (2017) · Zbl 1458.93196 · doi:10.1504/IJCSM.2017.083167
[8] Ouannas, A., Al-sawalha, M., Ziar, T.: Fractional chaos synchronization schemes for different dimensional systems with non-identical fractional-orders via two scaling matrices. Optik 127, 8410-8418 (2016) · doi:10.1016/j.ijleo.2016.06.006
[9] Ouannas, A., Azar, A., Vaidyanathan, S.: A robust method for new fractional hybrid chaos synchronization. Math. Methods Appl. Sci. 40, 1804-1812 (2017) · Zbl 1359.93025 · doi:10.1002/mma.4099
[10] Ouannas, A., Odibat, Z.: Fractional analysis of co-existence of some types of chaos synchronization. Chaos Solitons Fractals 105, 215-223 (2017) · Zbl 1380.93134 · doi:10.1016/j.chaos.2017.10.031
[11] Ouannas, A., Odibat, Z., Alsaedi, A., Hobiny, A., Hayat, T.: Investigation of Q-S synchronization in coupled chaotic incommensurate fractional order systems. Chin. J. Phys. 56, 1940-1948 (2018) · Zbl 1543.34079 · doi:10.1016/j.cjph.2018.09.003
[12] Junge, L., Parlitz, U.: Synchronization and control of couple complex Ginzburg-Landau equations using local coupling. Phys. Rev. E 61, 3736-3742 (2000)
[13] Bragard, J., Arecchi, F., Boccaletti, S.: Characterization of synchronized spatiotemporal states in coupled nonidentical complex Ginzburg-Landau equations. Int. J. Bifurc. Chaos 10, 2381-2389 (2000)
[14] Hramov, A., Koronovskii, A., Popov, P.: Generalized synchronization in coupled Ginzburg-Landau equations and mechanisms of its arising. Phys. Rev. E 72, 037201 (2005)
[15] Wu, K., Chen, B.S.: Synchronization of partial differential systems via diffusion coupling. IEEE Trans. Circuits Syst. I, Regul. Pap. 59, 2655-2668 (2012) · Zbl 1468.93085 · doi:10.1109/TCSI.2012.2190670
[16] Kokarev, L., Tasev, Z., Stojanovski, T., Parlitz, U.: Synchronizing spatiotemporal chaos. Chaos 7, 635-643 (1997) · Zbl 0934.37038 · doi:10.1063/1.166263
[17] Kocarev, L., Tasev, Z., Parlitz, U.: Synchronization of spatiotemporal chaos of partial differential equations. Phys. Rev. Lett. 79, 51-54 (1997) · doi:10.1103/PhysRevLett.79.51
[18] Bragard, J., Boccaletti, S., Mancini, H.: Asymmetric coupling effects in the synchronization of spatially extended chaotic systems. Phys. Rev. Lett. 91, 064103 (2003) · doi:10.1103/PhysRevLett.91.064103
[19] Mikhailov, A.S., Showalter, K.: Control of waves, patterns and turbulence in chemical systems. Phys. Rep. 425, 79-194 (2006) · doi:10.1016/j.physrep.2005.11.003
[20] Mikhailov, A.S., Ertl, G.: Engineering of Chemical Complexity. World Scientific, Singapore (2016)
[21] Nakao, H., Yanagita, T., Kawamura, Y.: Phase-reduction approach to synchronization of spatiotemporal rhythms in reaction – diffusion systems. Phys. Rev. X 4, 021032 (2014)
[22] Kawamura, Y., Shirasaka, S., Yanagita, T., Nakao, H.: Optimizing mutual synchronization of rhythmic spatiotemporal patterns in reaction – diffusion systems. Phys. Rev. E 96, 012224 (2017)
[23] Beta, C., Mikhailov, A.S.: Controlling spatiotemporal chaos in oscillatory reaction – diffusion systems by time-delay autosynchronization. Physica D 199, 173-184 (2004) · Zbl 1058.35104
[24] Hramov, A.E., Koronovskii, A.A., Popov, P.V.: Generalized synchronization in coupled Ginzburg-Landau equations and mechanisms of its arising. Phys. Rev. E 72, 037201 (2005)
[25] García, P., Acosta, A., Leiva, H.: Synchronization conditions for master-slave reaction diffusion systems. Europhys. Lett. 88, 60006 (2009) · doi:10.1209/0295-5075/88/60006
[26] Acostaa, A., García, P., Leiva, H.: Synchronization of non-identical extended chaotic systems. Appl. Anal. 92, 740-751 (2013) · Zbl 1356.35120 · doi:10.1080/00036811.2011.635654
[27] Ambrosio, B., Aziz-Alaoui, M.A.: Synchronization and control of coupled reaction – diffusion systems of the Fitzhugh-Nagumo type. Comput. Math. Appl. 64, 934-943 (2012) · Zbl 1356.93039 · doi:10.1016/j.camwa.2012.01.056
[28] Wu, K.N., Tian, T., Wang, L.: Synchronization for a class of coupled linear partial differential systems via boundary control. J. Franklin Inst. 353, 4062-4073 (2016) · Zbl 1347.93031 · doi:10.1016/j.jfranklin.2016.07.019
[29] Chen, T., Wang, R., Wu, B.: Synchronization of multi-group coupled systems on networks with reaction – diffusion terms based on the graph-theoretic approach. Neurocomputing 227, 54-63 (2017) · doi:10.1016/j.neucom.2016.09.097
[30] Zhou, L., Shen, J.: Signal transmission of biological reaction – diffusion system by using synchronization. Front. Comput. Neurosci. 11, 92 (2017) · doi:10.3389/fncom.2017.00092
[31] Chen, H., Shi, P., Lim, C.C.: Pinning impulsive synchronization for stochastic reaction – diffusion dynamical networks with delay. Neural Netw. 106, 281-293 (2018) · Zbl 1443.93133 · doi:10.1016/j.neunet.2018.07.009
[32] Liu, L., Chen, W.H., Lu, X.: Impulsive \(H∞H_{\infty }\) synchronization for reaction – diffusion neural networks with mixed delays. Neurocomputing 272, 481-494 (2018) · doi:10.1016/j.neucom.2017.07.023
[33] He, C., Li, J.: Hybrid adaptive synchronization strategy for linearly coupled reaction – diffusion neural networks with timevarying coupling strength. Neurocomputing 275, 1769-1781 (2018) · doi:10.1016/j.neucom.2017.10.022
[34] Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974) · Zbl 0292.26011
[35] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent—II. Geophys. J. R. Astron. Soc. 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[36] Chen, D., Zhang, R., Liu, X., Ma, X.: Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks. Commun. Nonlinear Sci. Numer. Simul. 19, 4105-4121 (2014) · Zbl 1440.34058 · doi:10.1016/j.cnsns.2014.05.005
[37] Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.