×

Extreme points of the Harsanyi set and the Weber set. (English) Zbl 1338.91017

Summary: In this paper, we present firstly a matrix approach, by Moebius transformation, to axiomatize the Harsanyi payoff vectors in the traditional worth system instead of the dividend system. Then by this approach, the Weber set is also characterized as the set of specialized Harsanyi payoff vectors. The study of marginal contribution vectors, the extreme points of the Weber set is pivotal to characterize the Weber set. Recall that an extreme point of a linear system can be recognized by its carriers. A linear system associated to the Weber set is constructed and a second approach to investigate their extreme points is accessed by the concept of carrier. We apply the same technique to study the extreme points of the Harsanyi set. Together with the core-type structure of the Harsanyi set, we present a recursive algorithm for computing the extreme points of the Harsanyi set for any game.

MSC:

91A12 Cooperative games
Full Text: DOI

References:

[1] Derks, J., A short proof of the inclusion of the core in the Weber set, Internat. J. Game Theory, 21, 149-150 (1992) · Zbl 0757.90091
[2] Derks, J., A new proof for Weber’s characterization of the random order values, Math. Social Sci., 49, 327-334 (2005) · Zbl 1114.91011
[3] Derks, J.; Haller, H.; Peters, H., The selectope for cooperative games, Internat. J. Game Theory, 29, 23-28 (2000) · Zbl 0959.91004
[4] Derks, J.; van der Laan, G.; Vasil’ev, V. A., Characterization of the random order values by Harsanyi payoff vectors, Math. Methods Oper. Res., 64, 155-163 (2006) · Zbl 1107.91016
[5] Derks, J.; van der Laan, G.; Vasil’ev, V. A., On the Harsanyi payoff vectors and Harsanyi imputations, Theory and Decision, 68, 301-310 (2010) · Zbl 1202.91012
[6] Derks, J.; Peters, H., A note on a consistency property for permutations, Discrete Math., 250, 241-244 (2002) · Zbl 1050.91021
[7] Dragan, I., Multiweighted Shapley values and random order values, (Proceedings of the 10th Conference on Applied Mathematics (1994), U.C. Oklahoma), 33-47
[8] Driessen, T. S.H.; Khmelnitskaya, A. B.; Sales, J., 1-concave basis for TU games and the library game, TOP, 20, 578-591 (2012) · Zbl 1257.91006
[9] Gillies, D. B., Some theorems on n-person games (1953), Princeton University Press: Princeton University Press Princeton, New Jersey, PhD thesis · Zbl 0050.14406
[10] Grabisch, M.; Marichal, J. L.; Roubens, M., Equivalent representations of set functions, Math. Oper. Res., 25, 157-178 (2000) · Zbl 0982.91009
[11] Hamiache, G., A matrix approach to the associated consistency with an application to the Shapley value, Int. Game Theory Rev., 12, 175-187 (2010) · Zbl 1203.91018
[12] Hammer, P. L.; Peled, U. N.; Sorensen, S., Pseudo-boolean functions and game theory, I. Core elements and Shapley value, Cah. Cent. Étud. Rech. Opér., 19, 159-176 (1977) · Zbl 0362.90143
[13] Harsanyi, J. C., A bargaining model for the cooperative \(n\)-person game, Ann. of Math. Stud., 40, 325-355 (1959) · Zbl 0084.36501
[14] Harsanyi, J. C., A simplified bargaining model for the \(n\)-person game, Internat. Econom. Rev., 4, 194-220 (1963) · Zbl 0118.15103
[15] Ichiishi, T., Super-modularity: applications to convex games and the greedy algorithm for LP, J. Econom. Theory, 25, 283-286 (1981) · Zbl 0478.90092
[16] Liu, J.; Liu, X., Existence of Edgeworth and competitive equilibria and fuzzy cores in coalition production economies, Internat. J. Game Theory, 43, 975-990 (2014) · Zbl 1304.91152
[17] Shapley, L. S., A value for N-person games, (Kuhn, H. W.; Tucker, A. W., Contributions to the Theory of Games II (1953), Princeton University Press: Princeton University Press Princeton), 307-317 · Zbl 0050.14404
[18] Shapley, L. S., Cores of convex games, Internat. J. Game Theory, 1, 11-26 (1971) · Zbl 0222.90054
[19] Su, J.; Xu, G., Matrix analysis for Shapley value, (Proceedings of the 9th International Conference on Matrix Theory and Its Applications, vol. 2 (2010)), 137-141
[20] Vasil’ev, V. A., The Shapley value for cooperative games of bounded polynomial variation, Optimizacija Vyp., 17, 5-27 (1975), (in Russian) · Zbl 0394.90113
[21] Vasil’ev, V. A., Support function of the core of a convex game, Optimizacija Vyp., 21, 30-35 (1978), (in Russian) · Zbl 0459.90093
[22] Vasil’ev, V. A., On the H-payoff vectors for cooperative games, Optimizacija Vyp., 24, 18-32 (1980), (in Russian) · Zbl 0497.90089
[23] Vasil’ev, V. A., On a class of imputations in cooperative games, Soviet Math. Dokl., 23, 53-57 (1981) · Zbl 0474.90089
[24] Vasil’ev, V. A., Extreme points of the Weber polyhedron, Discret. Anal. Issled. Oper. Ser. 1, 10, 63-89 (2003), (in Russian)
[25] Vasil’ev, V. A.; van der Laan, G., The Harsanyi set for cooperative TU-games, Siberian Adv. Math., 12, 97-125 (2002) · Zbl 1138.91332
[26] Weber, R. J., Probabilistic values for games, (Roth, A. E., The Shapley Value, Essays in Honor of L.S. Shapley (1988), Cambridge University Press: Cambridge University Press Cambridge), 101-119 · Zbl 0707.90100
[27] Xu, G.; Driessen, T. S.H.; Sun, H., Matrix analysis for associated consistency in cooperative game theory, Linear Algebra Appl., 428, 1571-1586 (2008) · Zbl 1133.91006
[28] Xu, G.; Driessen, T. S.H.; Sun, H.; Su, J., Consistency for the additive efficient normalization of semivalues, European J. Oper. Res., 224, 566-571 (2013) · Zbl 1292.91025
[29] Xu, G.; van den Brink, R.; van der Laan, G.; Sun, H., Associated consistency characterization of two linear values for TU games by matrix approach, Linear Algebra Appl., 471, 224-240 (2015) · Zbl 1320.91027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.